Abstract:We propose a dataset to study the influence of object-specific characteristics on human pick-and-place movements and compare the quality of the motion kinematics extracted by various sensors. This dataset is also suitable for promoting a broader discussion on general learning problems in the hand-object interaction domain, such as intention recognition or motion generation with applications in the Robotics field. The dataset consists of the recordings of 15 subjects performing 80 repetitions of a pick-and-place action under various experimental conditions, for a total of 1200 pick-and-places. The data has been collected thanks to a multimodal setup composed of multiple cameras, observing the actions from different perspectives, a motion capture system, and a wrist-worn inertial measurement unit. All the objects manipulated in the experiments are identical in shape, size, and appearance but differ in weight and liquid filling, which influences the carefulness required for their handling.
Abstract:This paper presents a comprehensive framework to enhance Human-Robot Collaboration (HRC) in real-world scenarios. It introduces a formalism to model articulated tasks, requiring cooperation between two agents, through a smaller set of primitives. Our implementation leverages Hierarchical Task Networks (HTN) planning and a modular multisensory perception pipeline, which includes vision, human activity recognition, and tactile sensing. To showcase the system's scalability, we present an experimental scenario where two humans alternate in collaborating with a Baxter robot to assemble four pieces of furniture with variable components. This integration highlights promising advancements in HRC, suggesting a scalable approach for complex, cooperative tasks across diverse applications.
Abstract:Dexterous in-hand manipulation is a unique and valuable human skill requiring sophisticated sensorimotor interaction with the environment while respecting stability constraints. Satisfying these constraints with generated motions is essential for a robotic platform to achieve reliable in-hand manipulation skills. Explicitly modelling these constraints can be challenging, but they can be implicitly modelled and learned through experience or human demonstrations. We propose a learning and control approach based on dictionaries of motion primitives generated from human demonstrations. To achieve this, we defined an optimization process that combines motion primitives to generate robot fingertip trajectories for moving an object from an initial to a desired final pose. Based on our experiments, our approach allows a robotic hand to handle objects like humans, adhering to stability constraints without requiring explicit formalization. In other words, the proposed motion primitive dictionaries learn and implicitly embed the constraints crucial to the in-hand manipulation task.
Abstract:Hands are a fundamental tool humans use to interact with the environment and objects. Through hand motions, we can obtain information about the shape and materials of the surfaces we touch, modify our surroundings by interacting with objects, manipulate objects and tools, or communicate with other people by leveraging the power of gestures. For these reasons, sensorized gloves, which can collect information about hand motions and interactions, have been of interest since the 1980s in various fields, such as Human-Machine Interaction (HMI) and the analysis and control of human motions. Over the last 40 years, research in this field explored different technological approaches and contributed to the popularity of wearable custom and commercial products targeting hand sensorization. Despite a positive research trend, these instruments are not widespread yet outside research environments and devices aimed at research are often ad hoc solutions with a low chance of being reused. This paper aims to provide a systematic literature review for custom gloves to analyze their main characteristics and critical issues, from the type and number of sensors to the limitations due to device encumbrance. The collection of this information lays the foundation for a standardization process necessary for future breakthroughs in this research field.
Abstract:This work aims to tackle the intent recognition problem in Human-Robot Collaborative assembly scenarios. Precisely, we consider an interactive assembly of a wooden stool where the robot fetches the pieces in the correct order and the human builds the parts following the instruction manual. The intent recognition is limited to the idle state estimation and it is needed to ensure a better synchronization between the two agents. We carried out a comparison between two distinct solutions involving wearable sensors and eye tracking integrated into the perception pipeline of a flexible planning architecture based on Hierarchical Task Networks. At runtime, the wearable sensing module exploits the raw measurements from four 9-axis Inertial Measurement Units positioned on the wrists and hands of the user as an input for a Long Short-Term Memory Network. On the other hand, the eye tracking relies on a Head Mounted Display and Unreal Engine. We tested the effectiveness of the two approaches with 10 participants, each of whom explored both options in alternate order. We collected explicit metrics about the attractiveness and efficiency of the two techniques through User Experience Questionnaires as well as implicit criteria regarding the classification time and the overall assembly time. The results of our work show that the two methods can reach comparable performances both in terms of effectiveness and user preference. Future development could aim at joining the two approaches two allow the recognition of more complex activities and to anticipate the user actions.
Abstract:Dexterous in-hand manipulation is a peculiar and useful human skill. This ability requires the coordination of many senses and hand motion to adhere to many constraints. These constraints vary and can be influenced by the object characteristics or the specific application. One of the key elements for a robotic platform to implement reliable inhand manipulation skills is to be able to integrate those constraints in their motion generations. These constraints can be implicitly modelled, learned through experience or human demonstrations. We propose a method based on motion primitives dictionaries to learn and reproduce in-hand manipulation skills. In particular, we focused on fingertip motions during the manipulation, and we defined an optimization process to combine motion primitives to reach specific fingertip configurations. The results of this work show that the proposed approach can generate manipulation motion coherent with the human one and that manipulation constraints are inherited even without an explicit formalization.