Abstract:The implementation of Hyperdimensional Computing (HDC) on In-Memory Computing (IMC) architectures faces significant challenges due to the mismatch between highdimensional vectors and IMC array sizes, leading to inefficient memory utilization and increased computation cycles. This paper presents MEMHD, a Memory-Efficient Multi-centroid HDC framework designed to address these challenges. MEMHD introduces a clustering-based initialization method and quantization aware iterative learning for multi-centroid associative memory. Through these approaches and its overall architecture, MEMHD achieves a significant reduction in memory requirements while maintaining or improving classification accuracy. Our approach achieves full utilization of IMC arrays and enables one-shot (or few-shot) associative search. Experimental results demonstrate that MEMHD outperforms state-of-the-art binary HDC models, achieving up to 13.69% higher accuracy with the same memory usage, or 13.25x more memory efficiency at the same accuracy level. Moreover, MEMHD reduces computation cycles by up to 80x and array usage by up to 71x compared to baseline IMC mapping methods when mapped to 128x128 IMC arrays, while significantly improving energy and computation cycle efficiency.
Abstract:Compute-in-memory (CIM) is an efficient method for implementing deep neural networks (DNNs) but suffers from substantial overhead from analog-to-digital converters (ADCs), especially as ADC precision increases. Low-precision ADCs can re- duce this overhead but introduce partial-sum quantization errors degrading accuracy. Additionally, low-bit weight constraints, im- posed by cell limitations and the need for multiple cells for higher- bit weights, present further challenges. While fine-grained partial- sum quantization has been studied to lower ADC resolution effectively, weight granularity, which limits overall partial-sum quantized accuracy, remains underexplored. This work addresses these challenges by aligning weight and partial-sum quantization granularities at the column-wise level. Our method improves accuracy while maintaining dequantization overhead, simplifies training by removing two-stage processes, and ensures robustness to memory cell variations via independent column-wise scale factors. We also propose an open-source CIM-oriented convolution framework to handle fine-grained weights and partial-sums effi- ciently, incorporating a novel tiling method and group convolution. Experimental results on ResNet-20 (CIFAR-10, CIFAR-100) and ResNet-18 (ImageNet) show accuracy improvements of 0.99%, 2.69%, and 1.01%, respectively, compared to the best-performing related works. Additionally, variation analysis reveals the robust- ness of our method against memory cell variations. These findings highlight the effectiveness of our quantization scheme in enhancing accuracy and robustness while maintaining hardware efficiency in CIM-based DNN implementations. Our code is available at https://github.com/jiyoonkm/ColumnQuant.
Abstract:In this study, we address the challenge of low-rank model compression in the context of in-memory computing (IMC) architectures. Traditional pruning approaches, while effective in model size reduction, necessitate additional peripheral circuitry to manage complex dataflows and mitigate dislocation issues, leading to increased area and energy overheads. To circumvent these drawbacks, we propose leveraging low-rank compression techniques, which, unlike pruning, streamline the dataflow and seamlessly integrate with IMC architectures. However, low-rank compression presents its own set of challenges, namely i) suboptimal IMC array utilization and ii) compromised accuracy. To address these issues, we introduce a novel approach i) employing shift and duplicate kernel (SDK) mapping technique, which exploits idle IMC columns for parallel processing, and ii) group low-rank convolution, which mitigates the information imbalance in the decomposed matrices. Our experimental results demonstrate that our proposed method achieves up to 2.5x speedup or +20.9% accuracy boost over existing pruning techniques.
Abstract:Leveraging the overfitting property of deep neural networks (DNNs) is trending in video delivery systems to enhance quality within bandwidth limits. Existing approaches transmit overfitted super-resolution (SR) model streams for low-resolution (LR) bitstreams, which are used to reconstruct high-resolution (HR) videos at the decoder. Although these approaches show promising results, the huge computational costs of training a large number of video frames limit their practical applications. To overcome this challenge, we propose an efficient patch sampling method named EPS for video SR network overfitting, which identifies the most valuable training patches from video frames. To this end, we first present two low-complexity Discrete Cosine Transform (DCT)-based spatial-temporal features to measure the complexity score of each patch directly. By analyzing the histogram distribution of these features, we then categorize all possible patches into different clusters and select training patches from the cluster with the highest spatial-temporal information. The number of sampled patches is adaptive based on the video content, addressing the trade-off between training complexity and efficiency. Our method reduces the number of patches for the training to 4% to 25%, depending on the resolution and number of clusters, while maintaining high video quality and significantly enhancing training efficiency. Compared to the state-of-the-art patch sampling method, EMT, our approach achieves an 83% decrease in overall run time.
Abstract:3D Gaussian splatting (3DGS) has recently emerged as an alternative representation that leverages a 3D Gaussian-based representation and introduces an approximated volumetric rendering, achieving very fast rendering speed and promising image quality. Furthermore, subsequent studies have successfully extended 3DGS to dynamic 3D scenes, demonstrating its wide range of applications. However, a significant drawback arises as 3DGS and its following methods entail a substantial number of Gaussians to maintain the high fidelity of the rendered images, which requires a large amount of memory and storage. To address this critical issue, we place a specific emphasis on two key objectives: reducing the number of Gaussian points without sacrificing performance and compressing the Gaussian attributes, such as view-dependent color and covariance. To this end, we propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance. In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field rather than relying on spherical harmonics. Finally, we learn codebooks to compactly represent the geometric and temporal attributes by residual vector quantization. With model compression techniques such as quantization and entropy coding, we consistently show over 25x reduced storage and enhanced rendering speed compared to 3DGS for static scenes, while maintaining the quality of the scene representation. For dynamic scenes, our approach achieves more than 12x storage efficiency and retains a high-quality reconstruction compared to the existing state-of-the-art methods. Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering. Our project page is available at https://maincold2.github.io/c3dgs/.
Abstract:The extraction of keypoint positions from input hand frames, known as 3D hand pose estimation, is crucial for various human-computer interaction applications. However, current approaches often struggle with the dynamic nature of self-occlusion of hands and intra-occlusion with interacting objects. To address this challenge, this paper proposes the Denoising Adaptive Graph Transformer, HandDAGT, for hand pose estimation. The proposed HandDAGT leverages a transformer structure to thoroughly explore effective geometric features from input patches. Additionally, it incorporates a novel attention mechanism to adaptively weigh the contribution of kinematic correspondence and local geometric features for the estimation of specific keypoints. This attribute enables the model to adaptively employ kinematic and local information based on the occlusion situation, enhancing its robustness and accuracy. Furthermore, we introduce a novel denoising training strategy aimed at improving the model's robust performance in the face of occlusion challenges. Experimental results show that the proposed model significantly outperforms the existing methods on four challenging hand pose benchmark datasets. Codes and pre-trained models are publicly available at https://github.com/cwc1260/HandDAGT.
Abstract:The neural radiance field (NeRF) has made significant strides in representing 3D scenes and synthesizing novel views. Despite its advancements, the high computational costs of NeRF have posed challenges for its deployment in resource-constrained environments and real-time applications. As an alternative to NeRF-like neural rendering methods, 3D Gaussian Splatting (3DGS) offers rapid rendering speeds while maintaining excellent image quality. However, as it represents objects and scenes using a myriad of Gaussians, it requires substantial storage to achieve high-quality representation. To mitigate the storage overhead, we propose Factorized 3D Gaussian Splatting (F-3DGS), a novel approach that drastically reduces storage requirements while preserving image quality. Inspired by classical matrix and tensor factorization techniques, our method represents and approximates dense clusters of Gaussians with significantly fewer Gaussians through efficient factorization. We aim to efficiently represent dense 3D Gaussians by approximating them with a limited amount of information for each axis and their combinations. This method allows us to encode a substantially large number of Gaussians along with their essential attributes -- such as color, scale, and rotation -- necessary for rendering using a relatively small number of elements. Extensive experimental results demonstrate that F-3DGS achieves a significant reduction in storage costs while maintaining comparable quality in rendered images.
Abstract:Extracting keypoint locations from input hand frames, known as 3D hand pose estimation, is a critical task in various human-computer interaction applications. Essentially, the 3D hand pose estimation can be regarded as a 3D point subset generative problem conditioned on input frames. Thanks to the recent significant progress on diffusion-based generative models, hand pose estimation can also benefit from the diffusion model to estimate keypoint locations with high quality. However, directly deploying the existing diffusion models to solve hand pose estimation is non-trivial, since they cannot achieve the complex permutation mapping and precise localization. Based on this motivation, this paper proposes HandDiff, a diffusion-based hand pose estimation model that iteratively denoises accurate hand pose conditioned on hand-shaped image-point clouds. In order to recover keypoint permutation and accurate location, we further introduce joint-wise condition and local detail condition. Experimental results demonstrate that the proposed HandDiff significantly outperforms the existing approaches on four challenging hand pose benchmark datasets. Codes and pre-trained models are publicly available at https://github.com/cwc1260/HandDiff.
Abstract:There have been significant advancements in anomaly detection in an unsupervised manner, where only normal images are available for training. Several recent methods aim to detect anomalies based on a memory, comparing or reconstructing the input with directly stored normal features (or trained features with normal images). However, such memory-based approaches operate on a discrete feature space implemented by the nearest neighbor or attention mechanism, suffering from poor generalization or an identity shortcut issue outputting the same as input, respectively. Furthermore, the majority of existing methods are designed to detect single-class anomalies, resulting in unsatisfactory performance when presented with multiple classes of objects. To tackle all of the above challenges, we propose CRAD, a novel anomaly detection method for representing normal features within a "continuous" memory, enabled by transforming spatial features into coordinates and mapping them to continuous grids. Furthermore, we carefully design the grids tailored for anomaly detection, representing both local and global normal features and fusing them effectively. Our extensive experiments demonstrate that CRAD successfully generalizes the normal features and mitigates the identity shortcut, furthermore, CRAD effectively handles diverse classes in a single model thanks to the high-granularity continuous representation. In an evaluation using the MVTec AD dataset, CRAD significantly outperforms the previous state-of-the-art method by reducing 65.0% of the error for multi-class unified anomaly detection. The project page is available at https://tae-mo.github.io/crad/.
Abstract:Despite the remarkable achievements of neural radiance fields (NeRF) in representing 3D scenes and generating novel view images, the aliasing issue, rendering "jaggies" or "blurry" images at varying camera distances, remains unresolved in most existing approaches. The recently proposed mip-NeRF has addressed this challenge by rendering conical frustums instead of rays. However, it relies on MLP architecture to represent the radiance fields, missing out on the fast training speed offered by the latest grid-based methods. In this work, we present mip-Grid, a novel approach that integrates anti-aliasing techniques into grid-based representations for radiance fields, mitigating the aliasing artifacts while enjoying fast training time. The proposed method generates multi-scale grids by applying simple convolution operations over a shared grid representation and uses the scale-aware coordinate to retrieve features at different scales from the generated multi-scale grids. To test the effectiveness, we integrated the proposed method into the two recent representative grid-based methods, TensoRF and K-Planes. Experimental results demonstrate that mip-Grid greatly improves the rendering performance of both methods and even outperforms mip-NeRF on multi-scale datasets while achieving significantly faster training time. For code and demo videos, please see https://stnamjef.github.io/mipgrid.github.io/.