Abstract:The implementation of Hyperdimensional Computing (HDC) on In-Memory Computing (IMC) architectures faces significant challenges due to the mismatch between highdimensional vectors and IMC array sizes, leading to inefficient memory utilization and increased computation cycles. This paper presents MEMHD, a Memory-Efficient Multi-centroid HDC framework designed to address these challenges. MEMHD introduces a clustering-based initialization method and quantization aware iterative learning for multi-centroid associative memory. Through these approaches and its overall architecture, MEMHD achieves a significant reduction in memory requirements while maintaining or improving classification accuracy. Our approach achieves full utilization of IMC arrays and enables one-shot (or few-shot) associative search. Experimental results demonstrate that MEMHD outperforms state-of-the-art binary HDC models, achieving up to 13.69% higher accuracy with the same memory usage, or 13.25x more memory efficiency at the same accuracy level. Moreover, MEMHD reduces computation cycles by up to 80x and array usage by up to 71x compared to baseline IMC mapping methods when mapped to 128x128 IMC arrays, while significantly improving energy and computation cycle efficiency.
Abstract:Compute-in-memory (CIM) is an efficient method for implementing deep neural networks (DNNs) but suffers from substantial overhead from analog-to-digital converters (ADCs), especially as ADC precision increases. Low-precision ADCs can re- duce this overhead but introduce partial-sum quantization errors degrading accuracy. Additionally, low-bit weight constraints, im- posed by cell limitations and the need for multiple cells for higher- bit weights, present further challenges. While fine-grained partial- sum quantization has been studied to lower ADC resolution effectively, weight granularity, which limits overall partial-sum quantized accuracy, remains underexplored. This work addresses these challenges by aligning weight and partial-sum quantization granularities at the column-wise level. Our method improves accuracy while maintaining dequantization overhead, simplifies training by removing two-stage processes, and ensures robustness to memory cell variations via independent column-wise scale factors. We also propose an open-source CIM-oriented convolution framework to handle fine-grained weights and partial-sums effi- ciently, incorporating a novel tiling method and group convolution. Experimental results on ResNet-20 (CIFAR-10, CIFAR-100) and ResNet-18 (ImageNet) show accuracy improvements of 0.99%, 2.69%, and 1.01%, respectively, compared to the best-performing related works. Additionally, variation analysis reveals the robust- ness of our method against memory cell variations. These findings highlight the effectiveness of our quantization scheme in enhancing accuracy and robustness while maintaining hardware efficiency in CIM-based DNN implementations. Our code is available at https://github.com/jiyoonkm/ColumnQuant.
Abstract:In this study, we address the challenge of low-rank model compression in the context of in-memory computing (IMC) architectures. Traditional pruning approaches, while effective in model size reduction, necessitate additional peripheral circuitry to manage complex dataflows and mitigate dislocation issues, leading to increased area and energy overheads. To circumvent these drawbacks, we propose leveraging low-rank compression techniques, which, unlike pruning, streamline the dataflow and seamlessly integrate with IMC architectures. However, low-rank compression presents its own set of challenges, namely i) suboptimal IMC array utilization and ii) compromised accuracy. To address these issues, we introduce a novel approach i) employing shift and duplicate kernel (SDK) mapping technique, which exploits idle IMC columns for parallel processing, and ii) group low-rank convolution, which mitigates the information imbalance in the decomposed matrices. Our experimental results demonstrate that our proposed method achieves up to 2.5x speedup or +20.9% accuracy boost over existing pruning techniques.