Abstract:Remote sensing images usually characterized by complex backgrounds, scale and orientation variations, and large intra-class variance. General semantic segmentation methods usually fail to fully investigate the above issues, and thus their performances on remote sensing image segmentation are limited. In this paper, we propose our LOGCAN++, a semantic segmentation model customized for remote sensing images, which is made up of a Global Class Awareness (GCA) module and several Local Class Awareness (LCA) modules. The GCA module captures global representations for class-level context modeling to reduce the interference of background noise. The LCA module generates local class representations as intermediate perceptual elements to indirectly associate pixels with the global class representations, targeting at dealing with the large intra-class variance problem. In particular, we introduce affine transformations in the LCA module for adaptive extraction of local class representations to effectively tolerate scale and orientation variations in remotely sensed images. Extensive experiments on three benchmark datasets show that our LOGCAN++ outperforms current mainstream general and remote sensing semantic segmentation methods and achieves a better trade-off between speed and accuracy. Code is available at https://github.com/xwmaxwma/rssegmentation.
Abstract:Remote sensing images usually characterized by complex backgrounds, scale and orientation variations, and large intra-class variance. General semantic segmentation methods usually fail to fully investigate the above issues, and thus their performances on remote sensing image segmentation are limited. In this paper, we propose our LOGCAN++, a semantic segmentation model customized for remote sensing images, which is made up of a Global Class Awareness (GCA) module and several Local Class Awareness (LCA) modules. The GCA module captures global representations for class-level context modeling to reduce the interference of background noise. The LCA module generates local class representations as intermediate perceptual elements to indirectly associate pixels with the global class representations, targeting at dealing with the large intra-class variance problem. In particular, we introduce affine transformations in the LCA module for adaptive extraction of local class representations to effectively tolerate scale and orientation variations in remotely sensed images. Extensive experiments on three benchmark datasets show that our LOGCAN++ outperforms current mainstream general and remote sensing semantic segmentation methods and achieves a better trade-off between speed and accuracy. Code is available at https://github.com/xwmaxwma/rssegmentation.
Abstract:Contextual bandit learning is increasingly favored in modern large-scale recommendation systems. To better utlize the contextual information and available user or item features, the integration of neural networks have been introduced to enhance contextual bandit learning and has triggered significant interest from both academia and industry. However, a major challenge arises when implementing a disjoint neural contextual bandit solution in large-scale recommendation systems, where each item or user may correspond to a separate bandit arm. The huge number of items to recommend poses a significant hurdle for real world production deployment. This paper focuses on a joint neural contextual bandit solution which serves all recommending items in one single model. The output consists of a predicted reward $\mu$, an uncertainty $\sigma$ and a hyper-parameter $\alpha$ which balances exploitation and exploration, e.g., $\mu + \alpha \sigma$. The tuning of the parameter $\alpha$ is typically heuristic and complex in practice due to its stochastic nature. To address this challenge, we provide both theoretical analysis and experimental findings regarding the uncertainty $\sigma$ of the joint neural contextual bandit model. Our analysis reveals that $\alpha$ demonstrates an approximate square root relationship with the size of the last hidden layer $F$ and inverse square root relationship with the amount of training data $N$, i.e., $\sigma \propto \sqrt{\frac{F}{N}}$. The experiments, conducted with real industrial data, align with the theoretical analysis, help understanding model behaviors and assist the hyper-parameter tuning during both offline training and online deployment.
Abstract:Reinforcement Learning (RL) offers a versatile framework for achieving long-term goals. Its generality allows us to formalize a wide range of problems that real-world intelligent systems encounter, such as dealing with delayed rewards, handling partial observability, addressing the exploration and exploitation dilemma, utilizing offline data to improve online performance, and ensuring safety constraints are met. Despite considerable progress made by the RL research community in addressing these issues, existing open-source RL libraries tend to focus on a narrow portion of the RL solution pipeline, leaving other aspects largely unattended. This paper introduces Pearl, a Production-ready RL agent software package explicitly designed to embrace these challenges in a modular fashion. In addition to presenting preliminary benchmark results, this paper highlights Pearl's industry adoptions to demonstrate its readiness for production usage. Pearl is open sourced on Github at github.com/facebookresearch/pearl and its official website is located at pearlagent.github.io.
Abstract:Multi-modal biomedical time series (MBTS) data offers a holistic view of the physiological state, holding significant importance in various bio-medical applications. Owing to inherent noise and distribution gaps across different modalities, MBTS can be complex to model. Various deep learning models have been developed to learn representations of MBTS but still fall short in robustness due to the ignorance of modal-to-modal variations. This paper presents a multi-scale and multi-modal biomedical time series representation learning (MBSL) network with contrastive learning to migrate these variations. Firstly, MBTS is grouped based on inter-modal distances, then each group with minimum intra-modal variations can be effectively modeled by individual encoders. Besides, to enhance the multi-scale feature extraction (encoder), various patch lengths and mask ratios are designed to generate tokens with semantic information at different scales and diverse contextual perspectives respectively. Finally, cross-modal contrastive learning is proposed to maximize consistency among inter-modal groups, maintaining useful information and eliminating noises. Experiments against four bio-medical applications show that MBSL outperforms state-of-the-art models by 33.9% mean average errors (MAE) in respiration rate, by 13.8% MAE in exercise heart rate, by 1.41% accuracy in human activity recognition, and by 1.14% F1-score in obstructive sleep apnea-hypopnea syndrome.
Abstract:Bandit learning algorithms have been an increasingly popular design choice for recommender systems. Despite the strong interest in bandit learning from the community, there remains multiple bottlenecks that prevent many bandit learning approaches from productionalization. Two of the most important bottlenecks are scaling to multi-task and A/B testing. Classic bandit algorithms, especially those leveraging contextual information, often requires reward for uncertainty estimation, which hinders their adoptions in multi-task recommender systems. Moreover, different from supervised learning algorithms, bandit learning algorithms emphasize greatly on the data collection process through their explorative nature. Such explorative behavior induces unfair evaluation for bandit learning agents in a classic A/B test setting. In this work, we present a novel design of production bandit learning life-cycle for recommender systems, along with a novel set of metrics to measure their efficiency in user exploration. We show through large-scale production recommender system experiments and in-depth analysis that our bandit agent design improves personalization for the production recommender system and our experiment design fairly evaluates the performance of bandit learning algorithms.