Abstract:A broad current application of algorithms is in formal and quantitative measures of murky concepts -- like merit -- to make decisions. When people strategically respond to these sorts of evaluations in order to gain favorable decision outcomes, their behavior can be subjected to moral judgments. They may be described as 'gaming the system' or 'cheating,' or (in other cases) investing 'honest effort' or 'improving.' Machine learning literature on strategic behavior has tried to describe these dynamics by emphasizing the efforts expended by decision subjects hoping to obtain a more favorable assessment -- some works offer ways to preempt or prevent such manipulations, some differentiate 'gaming' from 'improvement' behavior, while others aim to measure the effort burden or disparate effects of classification systems. We begin from a different starting point: that the design of an evaluation itself can be understood as furthering goals held by the evaluator which may be misaligned with broader societal goals. To develop the idea that evaluation represents a strategic interaction in which both the evaluator and the subject of their evaluation are operating out of self-interest, we put forward a model that represents the process of evaluation using three interacting agents: a decision subject, an evaluator, and society, representing a bundle of values and oversight mechanisms. We highlight our model's applicability to a number of social systems where one or two players strategically undermine the others' interests to advance their own. Treating evaluators as themselves strategic allows us to re-cast the scrutiny directed at decision subjects, towards the incentives that underpin institutional designs of evaluations. The moral standing of strategic behaviors often depend on the moral standing of the evaluations and incentives that provoke such behaviors.
Abstract:Optimization is offered as an objective approach to resolving complex, real-world decisions involving uncertainty and conflicting interests. It drives business strategies as well as public policies and, increasingly, lies at the heart of sophisticated machine learning systems. A paradigm used to approach potentially high-stakes decisions, optimization relies on abstracting the real world to a set of decision(s), objective(s) and constraint(s). Drawing from the modeling process and a range of actual cases, this paper describes the normative choices and assumptions that are necessarily part of using optimization. It then identifies six emergent problems that may be neglected: 1) Misspecified values can yield optimizations that omit certain imperatives altogether or incorporate them incorrectly as a constraint or as part of the objective, 2) Problematic decision boundaries can lead to faulty modularity assumptions and feedback loops, 3) Failing to account for multiple agents' divergent goals and decisions can lead to policies that serve only certain narrow interests, 4) Mislabeling and mismeasurement can introduce bias and imprecision, 5) Faulty use of relaxation and approximation methods, unaccompanied by formal characterizations and guarantees, can severely impede applicability, and 6) Treating optimization as a justification for action, without specifying the necessary contextual information, can lead to ethically dubious or faulty decisions. Suggestions are given to further understand and curb the harms that can arise when optimization is used wrongfully.
Abstract:In 1996, philosopher Helen Nissenbaum issued a clarion call concerning the erosion of accountability in society due to the ubiquitous delegation of consequential functions to computerized systems. Using the conceptual framing of moral blame, Nissenbaum described four types of barriers to accountability that computerization presented: 1) "many hands," the problem of attributing moral responsibility for outcomes caused by many moral actors; 2) "bugs," a way software developers might shrug off responsibility by suggesting software errors are unavoidable; 3) "computer as scapegoat," shifting blame to computer systems as if they were moral actors; and 4) "ownership without liability," a free pass to the tech industry to deny responsibility for the software they produce. We revisit these four barriers in relation to the recent ascendance of data-driven algorithmic systems--technology often folded under the heading of machine learning (ML) or artificial intelligence (AI)--to uncover the new challenges for accountability that these systems present. We then look ahead to how one might construct and justify a moral, relational framework for holding responsible parties accountable, and argue that the FAccT community is uniquely well-positioned to develop such a framework to weaken the four barriers.
Abstract:Scholars have recently drawn attention to a range of controversial issues posed by the use of computer vision for automatically generating descriptions of people in images. Despite these concerns, automated image description has become an important tool to ensure equitable access to information for blind and low vision people. In this paper, we investigate the ethical dilemmas faced by companies that have adopted the use of computer vision for producing alt text: textual descriptions of images for blind and low vision people, We use Facebook's automatic alt text tool as our primary case study. First, we analyze the policies that Facebook has adopted with respect to identity categories, such as race, gender, age, etc., and the company's decisions about whether to present these terms in alt text. We then describe an alternative -- and manual -- approach practiced in the museum community, focusing on how museums determine what to include in alt text descriptions of cultural artifacts. We compare these policies, using notable points of contrast to develop an analytic framework that characterizes the particular apprehensions behind these policy choices. We conclude by considering two strategies that seem to sidestep some of these concerns, finding that there are no easy ways to avoid the normative dilemmas posed by the use of computer vision to automate alt text.
Abstract:Innovations in AI have focused primarily on the questions of "what" and "how"-algorithms for finding patterns in web searches, for instance-without adequate attention to the possible harms (such as privacy, bias, or manipulation) and without adequate consideration of the societal context in which these systems operate. In part, this is driven by incentives and forces in the tech industry, where a more product-driven focus tends to drown out broader reflective concerns about potential harms and misframings. But this focus on what and how is largely a reflection of the engineering and mathematics-focused training in computer science, which emphasizes the building of tools and development of computational concepts. As a result of this tight technical focus, and the rapid, worldwide explosion in its use, AI has come with a storm of unanticipated socio-technical problems, ranging from algorithms that act in racially or gender-biased ways, get caught in feedback loops that perpetuate inequalities, or enable unprecedented behavioral monitoring surveillance that challenges the fundamental values of free, democratic societies. Given that AI is no longer solely the domain of technologists but rather of society as a whole, we need tighter coupling of computer science and those disciplines that study society and societal values.
Abstract:Important ethical concerns arising from computer vision datasets of people have been receiving significant attention, and a number of datasets have been withdrawn as a result. To meet the academic need for people-centric datasets, we propose an analytical framework to guide ethical evaluation of existing datasets and to serve future dataset creators in avoiding missteps. Our work is informed by a review and analysis of prior works and highlights where such ethical challenges arise.