Abstract:Knowledge graph (KG) technology is extensively utilized in many areas, and many companies offer applications based on KG. Nonetheless, the majority of KG platforms necessitate expertise and tremendous time and effort of users to construct KG records manually, which poses great difficulties for ordinary people to use. Additionally, audio data is abundant and holds valuable information, but it is challenging to transform it into a KG. What's more, the platforms usually do not leverage the full potential of the KGs constructed by users. In this paper, we propose an intelligent and user-friendly platform for Semi-automated KG Construction and Application (SAKA) to address the problems aforementioned. Primarily, users can semi-automatically construct KGs from structured data of numerous areas by interacting with the platform, based on which multi-versions of KG can be stored, viewed, managed, and updated. Moreover, we propose an Audio-based KG Information Extraction (AGIE) method to establish KGs from audio data. Lastly, the platform creates a semantic parsing-based knowledge base question answering (KBQA) system based on the user-created KGs. We prove the feasibility of the semi-automatic KG construction method on the SAKA platform.
Abstract:Although LLM-based agents, powered by Large Language Models (LLMs), can use external tools and memory mechanisms to solve complex real-world tasks, they may also introduce critical security vulnerabilities. However, the existing literature does not comprehensively evaluate attacks and defenses against LLM-based agents. To address this, we introduce Agent Security Bench (ASB), a comprehensive framework designed to formalize, benchmark, and evaluate the attacks and defenses of LLM-based agents, including 10 scenarios (e.g., e-commerce, autonomous driving, finance), 10 agents targeting the scenarios, over 400 tools, 23 different types of attack/defense methods, and 8 evaluation metrics. Based on ASB, we benchmark 10 prompt injection attacks, a memory poisoning attack, a novel Plan-of-Thought backdoor attack, a mixed attack, and 10 corresponding defenses across 13 LLM backbones with nearly 90,000 testing cases in total. Our benchmark results reveal critical vulnerabilities in different stages of agent operation, including system prompt, user prompt handling, tool usage, and memory retrieval, with the highest average attack success rate of 84.30\%, but limited effectiveness shown in current defenses, unveiling important works to be done in terms of agent security for the community. Our code can be found at https://github.com/agiresearch/ASB.
Abstract:In real-world clinical settings, data distributions evolve over time, with a continuous influx of new, limited disease cases. Therefore, class incremental learning is of great significance, i.e., deep learning models are required to learn new class knowledge while maintaining accurate recognition of previous diseases. However, traditional deep neural networks often suffer from severe forgetting of prior knowledge when adapting to new data unless trained from scratch, which undesirably costs much time and computational burden. Additionally, the sample sizes for different diseases can be highly imbalanced, with newly emerging diseases typically having much fewer instances, consequently causing the classification bias. To tackle these challenges, we are the first to propose a class-incremental learning method under limited samples in the biomedical field. First, we propose a novel cumulative entropy prediction module to measure the uncertainty of the samples, of which the most uncertain samples are stored in a memory bank as exemplars for the model's later review. Furthermore, we theoretically demonstrate its effectiveness in measuring uncertainty. Second, we developed a fine-grained semantic expansion module through various augmentations, leading to more compact distributions within the feature space and creating sufficient room for generalization to new classes. Besides, a cosine classifier is utilized to mitigate classification bias caused by imbalanced datasets. Across four imbalanced data distributions over two datasets, our method achieves optimal performance, surpassing state-of-the-art methods by as much as 53.54% in accuracy.
Abstract:Self-supervised learning models are vulnerable to backdoor attacks. Existing backdoor attacks that are effective in self-supervised learning often involve noticeable triggers, like colored patches, which are vulnerable to human inspection. In this paper, we propose an imperceptible and effective backdoor attack against self-supervised models. We first find that existing imperceptible triggers designed for supervised learning are not as effective in compromising self-supervised models. We then identify this ineffectiveness is attributed to the overlap in distributions between the backdoor and augmented samples used in self-supervised learning. Building on this insight, we design an attack using optimized triggers that are disentangled to the augmented transformation in the self-supervised learning, while also remaining imperceptible to human vision. Experiments on five datasets and seven SSL algorithms demonstrate our attack is highly effective and stealthy. It also has strong resistance to existing backdoor defenses. Our code can be found at https://github.com/Zhang-Henry/IMPERATIVE.
Abstract:Fault diagnosis is essential in industrial processes for monitoring the conditions of important machines. With the ever-increasing complexity of working conditions and demand for safety during production and operation, different diagnosis methods are required, and more importantly, an integrated fault diagnosis system that can cope with multiple tasks is highly desired. However, the diagnosis subtasks are often studied separately, and the currently available methods still need improvement for such a generalized system. To address this issue, we propose the Generalized Out-of-distribution Fault Diagnosis (GOOFD) framework to integrate diagnosis subtasks, such as fault detection, fault classification, and novel fault diagnosis. Additionally, a unified fault diagnosis method based on internal contrastive learning is put forward to underpin the proposed generalized framework. The method extracts features utilizing the internal contrastive learning technique and then recognizes the outliers based on the Mahalanobis distance. Experiments are conducted on a simulated benchmark dataset as well as two practical process datasets to evaluate the proposed framework. As demonstrated in the experiments, the proposed method achieves better performance compared with several existing techniques and thus verifies the effectiveness of the proposed framework.
Abstract:Intelligent fault diagnosis has made extraordinary advancements currently. Nonetheless, few works tackle class-incremental learning for fault diagnosis under limited fault data, i.e., imbalanced and long-tailed fault diagnosis, which brings about various notable challenges. Initially, it is difficult to extract discriminative features from limited fault data. Moreover, a well-trained model must be retrained from scratch to classify the samples from new classes, thus causing a high computational burden and time consumption. Furthermore, the model may suffer from catastrophic forgetting when trained incrementally. Finally, the model decision is biased toward the new classes due to the class imbalance. The problems can consequently lead to performance degradation of fault diagnosis models. Accordingly, we introduce a supervised contrastive knowledge distillation for incremental fault diagnosis under limited fault data (SCLIFD) framework to address these issues, which extends the classical incremental classifier and representation learning (iCaRL) framework from three perspectives. Primarily, we adopt supervised contrastive knowledge distillation (KD) to enhance its representation learning capability under limited fault data. Moreover, we propose a novel prioritized exemplar selection method adaptive herding (AdaHerding) to restrict the increase of the computational burden, which is also combined with KD to alleviate catastrophic forgetting. Additionally, we adopt the cosine classifier to mitigate the adverse impact of class imbalance. We conduct extensive experiments on simulated and real-world industrial processes under different imbalance ratios. Experimental results show that our SCLIFD outperforms the existing methods by a large margin.