Abstract:Wideband spectrum sensing (WSS) is critical for orchestrating multitudinous wireless transmissions via spectrum sharing, but may incur excessive costs of hardware, power and computation due to the high sampling rate. In this article, a deep learning based WSS framework embedding the multicoset preprocessing is proposed to enable the low-cost sub-Nyquist sampling. A pruned convolutional attention WSS network (PCA-WSSNet) is designed to organically integrate the multicoset preprocessing and the convolutional attention mechanism as well as to reduce the model complexity remarkably via the selective weight pruning without the performance loss. Furthermore, a transfer learning (TL) strategy benefiting from the model pruning is developed to improve the robustness of PCA-WSSNet with few adaptation samples of new scenarios. Simulation results show the performance superiority of PCA-WSSNet over the state of the art. Compared with direct TL, the pruned TL strategy can simultaneously improve the prediction accuracy in unseen scenarios, reduce the model size, and accelerate the model inference.
Abstract:Learning-task oriented semantic communication is pivotal in optimizing transmission efficiency by extracting and conveying essential semantics tailored to specific tasks, such as image reconstruction and classification. Nevertheless, the challenge of eavesdropping poses a formidable threat to semantic privacy due to the open nature of wireless communications. In this paper, intelligent reflective surface (IRS)-enhanced secure semantic communication (IRS-SSC) is proposed to guarantee the physical layer security from a task-oriented semantic perspective. Specifically, a multi-layer codebook is exploited to discretize continuous semantic features and describe semantics with different numbers of bits, thereby meeting the need for hierarchical semantic representation and further enhancing the transmission efficiency. Novel semantic security metrics, i.e., secure semantic rate (S-SR) and secure semantic spectrum efficiency (S-SSE), are defined to map the task-oriented security requirements at the application layer into the physical layer. To achieve artificial intelligence (AI)-native secure communication, we propose a noise disturbance enhanced hybrid deep reinforcement learning (NdeHDRL)-based resource allocation scheme. This scheme dynamically maximizes the S-SSE by jointly optimizing the bits for semantic representations, reflective coefficients of the IRS, and the subchannel assignment. Moreover, we propose a novel semantic context awared state space (SCA-SS) to fusion the high-dimensional semantic space and the observable system state space, which enables the agent to perceive semantic context and solves the dimensional catastrophe problem. Simulation results demonstrate the efficiency of our proposed schemes in both enhancing the security performance and the S-SSE compared to several benchmark schemes.
Abstract:Deep learning (DL) has significantly improved automatic modulation classification (AMC) by leveraging neural networks as the feature extractor.However, as the DL-based AMC becomes increasingly widespread, it is faced with the severe secure issue from various adversarial attacks. Existing defense methods often suffer from the high computational cost, intractable parameter tuning, and insufficient robustness.This paper proposes an eXplainable artificial intelligence (XAI) defense approach, which uncovers the negative information caused by the adversarial attack through measuring the importance of input features based on the SHapley Additive exPlanations (SHAP).By properly removing the negative information in adversarial samples and then fine-tuning(FT) the model, the impact of the attacks on the classification result can be mitigated.Experimental results demonstrate that the proposed SHAP-FT improves the classification performance of the model by 15%-20% under different attack levels,which not only enhances model robustness against various attack levels but also reduces the resource consumption, validating its effectiveness in safeguarding communication networks.
Abstract:Automatic modulation classification (AMC) is essential for the advancement and efficiency of future wireless communication networks. Deep learning (DL)-based AMC frameworks have garnered extensive attention for their impressive classification performance. However, existing DL-based AMC frameworks rely on two assumptions, large-scale training data and the same class pool between the training and testing data, which are not suitable for \emph{few-shot and open-set} scenarios. To address this issue, a novel few-shot open-set automatic modulation classification (FSOS-AMC) framework is proposed by exploiting a multi-scale attention network, meta-prototype training, and a modular open-set classifier. The multi-scale attention network is used to extract the features from the input signal, the meta-prototype training is adopted to train the feature extractor and the modular open-set classifier can be utilized to classify the testing data into one of the known modulations or potential unknown modulations. Extensive simulation results demonstrate that the proposed FSOS-AMC framework can achieve higher classification accuracy than the state-of-the-art methods for known modulations and unknown modulations in terms of accuracy and area under the receiver operating characteristic curve (AUROC). Moreover, the performance of the proposed FSOS-AMC framework under low signal-to-noise ratio (SNR) conditions is much better than the compared schemes.
Abstract:In hierarchical cognitive radio networks, edge or cloud servers utilize the data collected by edge devices for modulation classification, which, however, is faced with problems of the transmission overhead, data privacy, and computation load. In this article, an edge learning (EL) based framework jointly mobilizing the edge device and the edge server for intelligent co-inference is proposed to realize the collaborative automatic modulation classification (C-AMC) between them. A spectrum semantic compression neural network (SSCNet) with the lightweight structure is designed for the edge device to compress the collected raw data into a compact semantic message that is then sent to the edge server via the wireless channel. On the edge server side, a modulation classification neural network (MCNet) combining bidirectional long short-term memory (Bi?LSTM) and multi-head attention layers is elaborated to deter?mine the modulation type from the noisy semantic message. By leveraging the computation resources of both the edge device and the edge server, high transmission overhead and risks of data privacy leakage are avoided. The simulation results verify the effectiveness of the proposed C-AMC framework, significantly reducing the model size and computational complexity.
Abstract:For ultra-wideband and high-rate wireless communication systems, wideband spectrum sensing (WSS) is critical, since it empowers secondary users (SUs) to capture the spectrum holes for opportunistic transmission. However, WSS encounters challenges such as excessive costs of hardware and computation due to the high sampling rate, as well as robustness issues arising from scenario mismatch. In this paper, a WSS neural network (WSSNet) is proposed by exploiting multicoset preprocessing to enable the sub-Nyquist sampling, with the two dimensional convolution design specifically tailored to work with the preprocessed samples. A federated transfer learning (FTL) based framework mobilizing multiple SUs is further developed to achieve a robust model adaptable to various scenarios, which is paved by the selective weight pruning for the fast model adaptation and inference. Simulation results demonstrate that the proposed FTL-WSSNet achieves the fairly good performance in different target scenarios even without local adaptation samples.
Abstract:In hierarchical cognitive radio networks, edge or cloud servers utilize the data collected by edge devices for modulation classification, which, however, is faced with problems of the computation load, transmission overhead, and data privacy. In this article, an edge learning (EL) based framework jointly mobilizing the edge device and the edge server for intelligent co-inference is proposed to realize the collaborative automatic modulation classification (C-AMC) between them. A spectrum semantic compression neural network is designed for the edge device to compress the collected raw data into a compact semantic embedding that is then sent to the edge server via the wireless channel. On the edge server side, a modulation classification neural network combining the bidirectional long-short term memory and attention structures is elaborated to determine the modulation type from the noisy semantic embedding. The C-AMC framework decently balances the computation resources of both sides while avoiding the high transmission overhead and data privacy leakage. Both the offline and online training procedures of the C-AMC framework are elaborated. The compression strategy of the C-AMC framework is also developed to further facilitate the deployment, especially for the resource-constrained edge device. Simulation results show the superiority of the EL-based C-AMC framework in terms of the classification accuracy, computational complexity, and the data compression rate as well as reveal useful insights paving the practical implementation.
Abstract:As the demands for immediate and effective responses increase in both civilian and military domains, the unmanned aerial vehicle (UAV) swarms emerge as effective solutions, in which multiple cooperative UAVs can work together to achieve specific goals. However, how to manage such complex systems to ensure real-time adaptability lack sufficient researches. Hence, in this paper, we propose the cooperative cognitive dynamic system (CCDS), to optimize the management for UAV swarms. CCDS leverages a hierarchical and cooperative control structure that enables real-time data processing and decision. Accordingly, CCDS optimizes the UAV swarm management via dynamic reconfigurability and adaptive intelligent optimization. In addition, CCDS can be integrated with the biomimetic mechanism to efficiently allocate tasks for UAV swarms. Further, the distributed coordination of CCDS ensures reliable and resilient control, thus enhancing the adaptability and robustness. Finally, the potential challenges and future directions are analyzed, to provide insights into managing UAV swarms in dynamic heterogeneous networking.
Abstract:Wireless signal recognition (WSR) is crucial in modern and future wireless communication networks since it aims to identify properties of the received signal. Although many deep learning-based WSR models have been developed, they still rely on a large amount of labeled training data. Thus, they cannot tackle the few-sample problem in the practically and dynamically changing wireless communication environment. To overcome this challenge, a novel SSwsrNet framework is proposed by using the deep residual shrinkage network (DRSN) and semi-supervised learning. The DRSN can learn discriminative features from noisy signals. Moreover, a modular semi-supervised learning method that combines labeled and unlabeled data using MixMatch is exploited to further improve the classification performance under few-sample conditions. Extensive simulation results on automatic modulation classification (AMC) and wireless technology classification (WTC) demonstrate that our proposed WSR scheme can achieve better performance than the benchmark schemes in terms of classification accuracy. This novel method enables more robust and adaptive signal recognition for next-generation wireless networks.
Abstract:Automatic modulation classification (AMC) is a promising technology to realize intelligent wireless communications in the sixth generation (6G) wireless communication networks. Recently, many data-and-knowledge dual-driven AMC schemes have achieved high accuracy. However, most of these schemes focus on generating additional prior knowledge or features of blind signals, which consumes longer computation time and ignores the interpretability of the model learning process. To solve these problems, we propose a novel knowledge graph (KG) driven AMC (KGAMC) scheme by training the networks under the guidance of domain knowledge. A modulation knowledge graph (MKG) with the knowledge of modulation technical characteristics and application scenarios is constructed and a relation-graph convolution network (RGCN) is designed to extract knowledge of the MKG. This knowledge is utilized to facilitate the signal features separation of the data-oriented model by implementing a specialized feature aggregation method. Simulation results demonstrate that KGAMC achieves superior classification performance compared to other benchmark schemes, especially in the low signal-to-noise ratio (SNR) range. Furthermore, the signal features of the high-order modulation are more discriminative, thus reducing the confusion between similar signals.