Abstract:As the demands for immediate and effective responses increase in both civilian and military domains, the unmanned aerial vehicle (UAV) swarms emerge as effective solutions, in which multiple cooperative UAVs can work together to achieve specific goals. However, how to manage such complex systems to ensure real-time adaptability lack sufficient researches. Hence, in this paper, we propose the cooperative cognitive dynamic system (CCDS), to optimize the management for UAV swarms. CCDS leverages a hierarchical and cooperative control structure that enables real-time data processing and decision. Accordingly, CCDS optimizes the UAV swarm management via dynamic reconfigurability and adaptive intelligent optimization. In addition, CCDS can be integrated with the biomimetic mechanism to efficiently allocate tasks for UAV swarms. Further, the distributed coordination of CCDS ensures reliable and resilient control, thus enhancing the adaptability and robustness. Finally, the potential challenges and future directions are analyzed, to provide insights into managing UAV swarms in dynamic heterogeneous networking.
Abstract:Multi-access edge computing (MEC) is regarded as a promising technology in the sixth-generation communication. However, the antenna gain is always affected by the environment when unmanned aerial vehicles (UAVs) are served as MEC platforms, resulting in unexpected channel errors. In order to deal with the problem and reduce the power consumption in the UAV-based MEC, we jointly optimize the access scheme and power allocation in the hierarchical UAV-based MEC. Specifically, UAVs are deployed in the lower layer to collect data from ground users. Moreover, a UAV with powerful computation ability is deployed in the upper layer to assist with computing. The goal is to guarantee the quality of service and minimize the total power consumption. We consider the errors caused by various perturbations in realistic circumstances and formulate a distributionally robust chance-constrained optimization problem with an uncertainty set. The problem with chance constraints is intractable. To tackle this issue, we utilize the conditional value-at-risk method to reformulate the problem into a semidefinite programming form. Then, a joint algorithm for access scheme and power allocation is designed. Finally, we conduct simulations to demonstrate the efficiency of the proposed algorithm.
Abstract:The space-air-ground integrated network (SAGIN) is dynamic and flexible, which can support transmitting data in environments lacking ground communication facilities. However, the nodes of SAGIN are heterogeneous and it is intractable to share the resources to provide multiple services. Therefore, in this paper, we consider using network function virtualization technology to handle the problem of agile resource allocation. In particular, the service function chains (SFCs) are constructed to deploy multiple virtual network functions of different tasks. To depict the dynamic model of SAGIN, we propose the reconfigurable time extension graph. Then, an optimization problem is formulated to maximize the number of completed tasks, i.e., the successful deployed SFC. It is a mixed integer linear programming problem, which is hard to solve in limited time complexity. Hence, we transform it as a many-to-one two-sided matching game problem. Then, we design a Gale-Shapley based algorithm. Finally, via abundant simulations, it is verified that the designed algorithm can effectively deploy SFCs with efficient resource utilization.
Abstract:With the continuous increment of maritime applications, the development of marine networks for data offloading becomes necessary. However, the limited maritime network resources are very difficult to satisfy real-time demands. Besides, how to effectively handle multiple compute-intensive tasks becomes another intractable issue. Hence, in this paper, we focus on the decision of maritime task offloading by the cooperation of unmanned aerial vehicles (UAVs) and vessels. Specifically, we first propose a cooperative offloading framework, including the demands from marine Internet of Things (MIoTs) devices and resource providers from UAVs and vessels. Due to the limited energy and computation ability of UAVs, it is necessary to help better apply the vessels to computation offloading. Then, we formulate the studied problem into a Markov decision process, aiming to minimize the total execution time and energy cost. Then, we leverage Lyapunov optimization to convert the long-term constraints of the total execution time and energy cost into their short-term constraints, further yielding a set of per-time-slot optimization problems. Furthermore, we propose a Q-learning based approach to solve the short-term problem efficiently. Finally, simulation results are conducted to verify the correctness and effectiveness of the proposed algorithm.