Abstract:Flow matching has recently emerged as a powerful paradigm for generative modeling and has been extended to probabilistic time series forecasting in latent spaces. However, the impact of the specific choice of probability path model on forecasting performance remains under-explored. In this work, we demonstrate that forecasting spatio-temporal data with flow matching is highly sensitive to the selection of the probability path model. Motivated by this insight, we propose a novel probability path model designed to improve forecasting performance. Our empirical results across various dynamical system benchmarks show that our model achieves faster convergence during training and improved predictive performance compared to existing probability path models. Importantly, our approach is efficient during inference, requiring only a few sampling steps. This makes our proposed model practical for real-world applications and opens new avenues for probabilistic forecasting.
Abstract:Algorithm-selection (AS) methods are essential in order to obtain the best performance from a portfolio of solvers over large sets of instances. However, many AS methods rely on an analysis phase, e.g. where features are computed by sampling solutions and used as input in a machine-learning model. For AS to be efficient, it is therefore important that this analysis phase is not computationally expensive. We propose a method for identifying easy instances which can be solved quickly using a generalist solver without any need for algorithm-selection. This saves computational budget associated with feature-computation which can then be used elsewhere in an AS pipeline, e.g., enabling additional function evaluations on hard problems. Experiments on the BBOB dataset in two settings (batch and streaming) show that identifying easy instances results in substantial savings in function evaluations. Re-allocating the saved budget to hard problems provides gains in performance compared to both the virtual best solver (VBS) computed with the original budget, the single best solver (SBS) and a trained algorithm-selector.
Abstract:Deep neural networks (DNN) are increasingly being used to perform algorithm-selection in combinatorial optimisation domains, particularly as they accommodate input representations which avoid designing and calculating features. Mounting evidence from domains that use images as input shows that deep convolutional networks are vulnerable to adversarial samples, in which a small perturbation of an instance can cause the DNN to misclassify. However, it remains unknown as to whether deep recurrent networks (DRN) which have recently been shown promise as algorithm-selectors in the bin-packing domain are equally vulnerable. We use an evolutionary algorithm (EA) to find perturbations of instances from two existing benchmarks for online bin packing that cause trained DRNs to misclassify: adversarial samples are successfully generated from up to 56% of the original instances depending on the dataset. Analysis of the new misclassified instances sheds light on the `fragility' of some training instances, i.e. instances where it is trivial to find a small perturbation that results in a misclassification and the factors that influence this. Finally, the method generates a large number of new instances misclassified with a wide variation in confidence, providing a rich new source of training data to create more robust models.
Abstract:We consider the solution of nonlinear inverse problems where the forward problem is a discretization of a partial differential equation. Such problems are notoriously difficult to solve in practice and require minimizing a combination of a data-fit term and a regularization term. The main computational bottleneck of typical algorithms is the direct estimation of the data misfit. Therefore, likelihood-free approaches have become appealing alternatives. Nonetheless, difficulties in generalization and limitations in accuracy have hindered their broader utility and applicability. In this work, we use a paired autoencoder framework as a likelihood-free estimator for inverse problems. We show that the use of such an architecture allows us to construct a solution efficiently and to overcome some known open problems when using likelihood-free estimators. In particular, our framework can assess the quality of the solution and improve on it if needed. We demonstrate the viability of our approach using examples from full waveform inversion and inverse electromagnetic imaging.
Abstract:The choice of input-data used to train algorithm-selection models is recognised as being a critical part of the model success. Recently, feature-free methods for algorithm-selection that use short trajectories obtained from running a solver as input have shown promise. However, it is unclear to what extent these trajectories reliably discriminate between solvers. We propose a meta approach to generating discriminatory trajectories with respect to a portfolio of solvers. The algorithm-configuration tool irace is used to tune the parameters of a simple Simulated Annealing algorithm (SA) to produce trajectories that maximise the performance metrics of ML models trained on this data. We show that when the trajectories obtained from the tuned SA algorithm are used in ML models for algorithm-selection and performance prediction, we obtain significantly improved performance metrics compared to models trained both on raw trajectory data and on exploratory landscape features.
Abstract:In evolutionary robotics, jointly optimising the design and the controller of robots is a challenging task due to the huge complexity of the solution space formed by the possible combinations of body and controller. We focus on the evolution of robots that can be physically created rather than just simulated, in a rich morphological space that includes a voxel-based chassis, wheels, legs and sensors. On the one hand, this space offers a high degree of liberty in the range of robots that can be produced, while on the other hand introduces a complexity rarely dealt with in previous works relating to matching controllers to designs and in evolving closed-loop control. This is usually addressed by augmenting evolution with a learning algorithm to refine controllers. Although several frameworks exist, few have studied the role of the \textit{evolutionary dynamics} of the intertwined `evolution+learning' processes in realising high-performing robots. We conduct an in-depth study of the factors that influence these dynamics, specifically: synchronous vs asynchronous evolution; the mechanism for replacing parents with offspring, and rewarding goal-based fitness vs novelty via selection. Results show that asynchronicity combined with goal-based selection and a `replace worst' strategy results in the highest performance.
Abstract:Morpho-evolution (ME) refers to the simultaneous optimisation of a robot's design and controller to maximise performance given a task and environment. Many genetic encodings have been proposed which are capable of representing design and control. Previous research has provided empirical comparisons between encodings in terms of their performance with respect to an objective function and the diversity of designs that are evaluated, however there has been no attempt to explain the observed findings. We address this by applying Local Optima Network (LON) analysis to investigate the structure of the fitness landscapes induced by three different encodings when evolving a robot for a locomotion task, shedding new light on the ease by which different fitness landscapes can be traversed by a search process. This is the first time LON analysis has been applied in the field of ME despite its popularity in combinatorial optimisation domains; the findings will facilitate design of new algorithms or operators that are customised to ME landscapes in the future.
Abstract:Machine-learning approaches to algorithm-selection typically take data describing an instance as input. Input data can take the form of features derived from the instance description or fitness landscape, or can be a direct representation of the instance itself, i.e. an image or textual description. Regardless of the choice of input, there is an implicit assumption that instances that are similar will elicit similar performance from algorithm, and that a model is capable of learning this relationship. We argue that viewing algorithm-selection purely from an instance perspective can be misleading as it fails to account for how an algorithm `views' similarity between instances. We propose a novel `algorithm-centric' method for describing instances that can be used to train models for algorithm-selection: specifically, we use short probing trajectories calculated by applying a solver to an instance for a very short period of time. The approach is demonstrated to be promising, providing comparable or better results to computationally expensive landscape-based feature-based approaches. Furthermore, projecting the trajectories into a 2-dimensional space illustrates that functions that are similar from an algorithm-perspective do not necessarily correspond to the accepted categorisation of these functions from a human perspective.
Abstract:Lengthy evaluation times are common in many optimization problems such as direct policy search tasks, especially when they involve conducting evaluations in the physical world, e.g. in robotics applications. Often, when evaluating a solution over a fixed time period, it becomes clear that the objective value will not increase with additional computation time (for example, when a two-wheeled robot continuously spins on the spot). In such cases, it makes sense to stop the evaluation early to save computation time. However, most approaches to stop the evaluation are problem-specific and need to be specifically designed for the task at hand. Therefore, we propose an early stopping method for direct policy search. The proposed method only looks at the objective value at each time step and requires no problem-specific knowledge. We test the introduced stopping criterion in five direct policy search environments drawn from games, robotics, and classic control domains, and show that it can save up to 75% of the computation time. We also compare it with problem-specific stopping criteria and demonstrate that it performs comparably while being more generally applicable.
Abstract:Dynamic algorithm selection aims to exploit the complementarity of multiple optimization algorithms by switching between them during the search. While these kinds of dynamic algorithms have been shown to have potential to outperform their component algorithms, it is still unclear how this potential can best be realized. One promising approach is to make use of landscape features to enable a per-run trajectory-based switch. Here, the samples seen by the first algorithm are used to create a set of features which describe the landscape from the perspective of the algorithm. These features are then used to predict what algorithm to switch to. In this work, we extend this per-run trajectory-based approach to consider a wide variety of potential points at which to perform the switch. We show that using a sliding window to capture the local landscape features contains information which can be used to predict whether a switch at that point would be beneficial to future performance. By analyzing the resulting models, we identify what features are most important to these predictions. Finally, by evaluating the importance of features and comparing these values between multiple algorithms, we show clear differences in the way the second algorithm interacts with the local landscape features found before the switch.