Abstract:Adversarial camouflage is a widely used physical attack against vehicle detectors for its superiority in multi-view attack performance. One promising approach involves using differentiable neural renderers to facilitate adversarial camouflage optimization through gradient back-propagation. However, existing methods often struggle to capture environmental characteristics during the rendering process or produce adversarial textures that can precisely map to the target vehicle. Moreover, these approaches neglect diverse weather conditions, reducing the efficacy of generated camouflage across varying weather scenarios. To tackle these challenges, we propose a robust and accurate camouflage generation method, namely RAUCA. The core of RAUCA is a novel neural rendering component, End-to-End Neural Renderer Plus (E2E-NRP), which can accurately optimize and project vehicle textures and render images with environmental characteristics such as lighting and weather. In addition, we integrate a multi-weather dataset for camouflage generation, leveraging the E2E-NRP to enhance the attack robustness. Experimental results on six popular object detectors show that RAUCA-final outperforms existing methods in both simulation and real-world settings.
Abstract:While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: \url{https://github.com/duguodong7/pcb-merging}.
Abstract:Prior works on physical adversarial camouflage against vehicle detectors mainly focus on the effectiveness and robustness of the attack. The current most successful methods optimize 3D vehicle texture at a pixel level. However, this results in conspicuous and attention-grabbing patterns in the generated camouflage, which humans can easily identify. To address this issue, we propose a Customizable and Natural Camouflage Attack (CNCA) method by leveraging an off-the-shelf pre-trained diffusion model. By sampling the optimal texture image from the diffusion model with a user-specific text prompt, our method can generate natural and customizable adversarial camouflage while maintaining high attack performance. With extensive experiments on the digital and physical worlds and user studies, the results demonstrate that our proposed method can generate significantly more natural-looking camouflage than the state-of-the-art baselines while achieving competitive attack performance. Our code is available at \href{https://anonymous.4open.science/r/CNCA-1D54}{https://anonymous.4open.science/r/CNCA-1D54}
Abstract:Adversarial camouflage is a widely used physical attack against vehicle detectors for its superiority in multi-view attack performance. One promising approach involves using differentiable neural renderers to facilitate adversarial camouflage optimization through gradient back-propagation. However, existing methods often struggle to capture environmental characteristics during the rendering process or produce adversarial textures that can precisely map to the target vehicle, resulting in suboptimal attack performance. Moreover, these approaches neglect diverse weather conditions, reducing the efficacy of generated camouflage across varying weather scenarios. To tackle these challenges, we propose a robust and accurate camouflage generation method, namely RAUCA. The core of RAUCA is a novel neural rendering component, Neural Renderer Plus (NRP), which can accurately project vehicle textures and render images with environmental characteristics such as lighting and weather. In addition, we integrate a multi-weather dataset for camouflage generation, leveraging the NRP to enhance the attack robustness. Experimental results on six popular object detectors show that RAUCA consistently outperforms existing methods in both simulation and real-world settings.
Abstract:Deep Active Learning (DAL) has been advocated as a promising method to reduce labeling costs in supervised learning. However, existing evaluations of DAL methods are based on different settings, and their results are controversial. To tackle this issue, this paper comprehensively evaluates 19 existing DAL methods in a uniform setting, including traditional fully-\underline{s}upervised \underline{a}ctive \underline{l}earning (SAL) strategies and emerging \underline{s}emi-\underline{s}upervised \underline{a}ctive \underline{l}earning (SSAL) techniques. We have several non-trivial findings. First, most SAL methods cannot achieve higher accuracy than random selection. Second, semi-supervised training brings significant performance improvement compared to pure SAL methods. Third, performing data selection in the SSAL setting can achieve a significant and consistent performance improvement, especially with abundant unlabeled data. Our findings produce the following guidance for practitioners: one should (i) apply SSAL early and (ii) collect more unlabeled data whenever possible, for better model performance.