Abstract:Cinematic audio source separation (CASS) is a fairly new subtask of audio source separation. A typical setup of CASS is a three-stem problem, with the aim of separating the mixture into the dialogue stem (DX), music stem (MX), and effects stem (FX). In practice, however, several edge cases exist as some sound sources do not fit neatly in either of these three stems, necessitating the use of additional auxiliary stems in production. One very common edge case is the singing voice in film audio, which may belong in either the DX or MX, depending heavily on the cinematic context. In this work, we demonstrate a very straightforward extension of the dedicated-decoder Bandit and query-based single-decoder Banquet models to a four-stem problem, treating non-musical dialogue, instrumental music, singing voice, and effects as separate stems. Interestingly, the query-based Banquet model outperformed the dedicated-decoder Bandit model. We hypothesized that this is due to a better feature alignment at the bottleneck as enforced by the band-agnostic FiLM layer. Dataset and model implementation will be made available at https://github.com/kwatcharasupat/source-separation-landing.
Abstract:Cinematic audio source separation (CASS) is a relatively new subtask of audio source separation, concerned with the separation of a mixture into the dialogue, music, and effects stems. To date, only one publicly available dataset exists for CASS, that is, the Divide and Remaster (DnR) dataset, which is currently at version 2. While DnR v2 has been an incredibly useful resource for CASS, several areas of improvement have been identified, particularly through its use in the 2023 Sound Demixing Challenge. In this work, we develop version 3 of the DnR dataset, addressing issues relating to vocal content in non-dialogue stems, loudness distributions, mastering process, and linguistic diversity. In particular, the dialogue stem of DnR v3 includes speech content from more than 30 languages from multiple families including but not limited to the Germanic, Romance, Indo-Aryan, Dravidian, Malayo-Polynesian, and Bantu families. Benchmark results using the Bandit model indicated that training on multilingual data yields significant generalizability to the model even in languages with low data availability. Even in languages with high data availability, the multilingual model often performs on par or better than dedicated models trained on monolingual CASS datasets.
Abstract:Research into the prediction and analysis of perceived audio quality is hampered by the scarcity of openly available datasets of audio signals accompanied by corresponding subjective quality scores. To address this problem, we present the Open Dataset of Audio Quality (ODAQ), a new dataset containing the results of a MUSHRA listening test conducted with expert listeners from 2 international laboratories. ODAQ contains 240 audio samples and corresponding quality scores. Each audio sample is rated by 26 listeners. The audio samples are stereo audio signals sampled at 44.1 or 48 kHz and are processed by a total of 6 method classes, each operating at different quality levels. The processing method classes are designed to generate quality degradations possibly encountered during audio coding and source separation, and the quality levels for each method class span the entire quality range. The diversity of the processing methods, the large span of quality levels, the high sampling frequency, and the pool of international listeners make ODAQ particularly suited for further research into subjective and objective audio quality. The dataset is released with permissive licenses, and the software used to conduct the listening test is also made publicly available.
Abstract:Cinematic audio source separation is a relatively new subtask of audio source separation, with the aim of extracting the dialogue stem, the music stem, and the effects stem from their mixture. In this work, we developed a model generalizing the Bandsplit RNN for any complete or overcomplete partitions of the frequency axis. Psycho-acoustically motivated frequency scales were used to inform the band definitions which are now defined with redundancy for more reliable feature extraction. A loss function motivated by the signal-to-noise ratio and the sparsity-promoting property of the 1-norm was proposed. We additionally exploit the information-sharing property of a common-encoder setup to reduce computational complexity during both training and inference, improve separation performance for hard-to-generalize classes of sounds, and allow flexibility during inference time with easily detachable decoders. Our best model sets the state of the art on the Divide and Remaster dataset with performance above the ideal ratio mask for the dialogue stem.
Abstract:Audiovisual representation learning typically relies on the correspondence between sight and sound. However, there are often multiple audio tracks that can correspond with a visual scene. Consider, for example, different conversations on the same crowded street. The effect of such counterfactual pairs on audiovisual representation learning has not been previously explored. To investigate this, we use dubbed versions of movies to augment cross-modal contrastive learning. Our approach learns to represent alternate audio tracks, differing only in speech content, similarly to the same video. Our results show that dub-augmented training improves performance on a range of auditory and audiovisual tasks, without significantly affecting linguistic task performance overall. We additionally compare this approach to a strong baseline where we remove speech before pretraining, and find that dub-augmented training is more effective, including for paralinguistic and audiovisual tasks where speech removal leads to worse performance. These findings highlight the importance of considering speech variation when learning scene-level audiovisual correspondences and suggest that dubbed audio can be a useful augmentation technique for training audiovisual models toward more robust performance.
Abstract:We propose a dataset, AVASpeech-SMAD, to assist speech and music activity detection research. With frame-level music labels, the proposed dataset extends the existing AVASpeech dataset, which originally consists of 45 hours of audio and speech activity labels. To the best of our knowledge, the proposed AVASpeech-SMAD is the first open-source dataset that features strong polyphonic labels for both music and speech. The dataset was manually annotated and verified via an iterative cross-checking process. A simple automatic examination was also implemented to further improve the quality of the labels. Evaluation results from two state-of-the-art SMAD systems are also provided as a benchmark for future reference.
Abstract:Vehicle re-identification (re-ID) focuses on matching images of the same vehicle across different cameras. It is fundamentally challenging because differences between vehicles are sometimes subtle. While several studies incorporate spatial-attention mechanisms to help vehicle re-ID, they often require expensive keypoint labels or suffer from noisy attention mask if not trained with expensive labels. In this work, we propose a dedicated Semantics-guided Part Attention Network (SPAN) to robustly predict part attention masks for different views of vehicles given only image-level semantic labels during training. With the help of part attention masks, we can extract discriminative features in each part separately. Then we introduce Co-occurrence Part-attentive Distance Metric (CPDM) which places greater emphasis on co-occurrence vehicle parts when evaluating the feature distance of two images. Extensive experiments validate the effectiveness of the proposed method and show that our framework outperforms the state-of-the-art approaches.
Abstract:Video-based person re-identification (Re-ID) aims at matching video sequences of pedestrians across non-overlapping cameras. It is a practical yet challenging task of how to embed spatial and temporal information of a video into its feature representation. While most existing methods learn the video characteristics by aggregating image-wise features and designing attention mechanisms in Neural Networks, they only explore the correlation between frames at high-level features. In this work, we target at refining the intermediate features as well as high-level features with non-local attention operations and make two contributions. (i) We propose a Non-local Video Attention Network (NVAN) to incorporate video characteristics into the representation at multiple feature levels. (ii) We further introduce a Spatially and Temporally Efficient Non-local Video Attention Network (STE-NVAN) to reduce the computation complexity by exploring spatial and temporal redundancy presented in pedestrian videos. Extensive experiments show that our NVAN outperforms state-of-the-arts by 3.8% in rank-1 accuracy on MARS dataset and confirms our STE-NVAN displays a much superior computation footprint compared to existing methods.
Abstract:FusionGAN is a novel genre fusion framework for music generation that integrates the strengths of generative adversarial networks and dual learning. In particular, the proposed method offers a dual learning extension that can effectively integrate the styles of the given domains. To efficiently quantify the difference among diverse domains and avoid the vanishing gradient issue, FusionGAN provides a Wasserstein based metric to approximate the distance between the target domain and the existing domains. Adopting the Wasserstein distance, a new domain is created by combining the patterns of the existing domains using adversarial learning. Experimental results on public music datasets demonstrated that our approach could effectively merge two genres.