Abstract:This report introduces xGen-MM (also known as BLIP-3), a framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. xGen-MM, short for xGen-MultiModal, expands the Salesforce xGen initiative on foundation AI models. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our pre-trained base model exhibits strong in-context learning capabilities and the instruction-tuned model demonstrates competitive performance among open-source LMMs with similar model sizes. In addition, we introduce a safety-tuned model with DPO, aiming to mitigate harmful behaviors such as hallucinations and improve safety. We open-source our models, curated large-scale datasets, and our fine-tuning codebase to facilitate further advancements in LMM research. Associated resources will be available on our project page above.
Abstract:Incorporating human feedback has been shown to be crucial to align text generated by large language models to human preferences. We hypothesize that state-of-the-art instructional image editing models, where outputs are generated based on an input image and an editing instruction, could similarly benefit from human feedback, as their outputs may not adhere to the correct instructions and preferences of users. In this paper, we present a novel framework to harness human feedback for instructional visual editing (HIVE). Specifically, we collect human feedback on the edited images and learn a reward function to capture the underlying user preferences. We then introduce scalable diffusion model fine-tuning methods that can incorporate human preferences based on the estimated reward. Besides, to mitigate the bias brought by the limitation of data, we contribute a new 1M training dataset, a 3.6K reward dataset for rewards learning, and a 1K evaluation dataset to boost the performance of instructional image editing. We conduct extensive empirical experiments quantitatively and qualitatively, showing that HIVE is favored over previous state-of-the-art instructional image editing approaches by a large margin.
Abstract:Graphic layout designs play an essential role in visual communication. Yet handcrafting layout designs are skill-demanding, time-consuming, and non-scalable to batch production. Although generative models emerge to make design automation no longer utopian, it remains non-trivial to customize designs that comply with designers' multimodal desires, i.e., constrained by background images and driven by foreground contents. In this study, we propose \textit{LayoutDETR} that inherits the high quality and realism from generative modeling, in the meanwhile reformulating content-aware requirements as a detection problem: we learn to detect in a background image the reasonable locations, scales, and spatial relations for multimodal elements in a layout. Experiments validate that our solution yields new state-of-the-art performance for layout generation on public benchmarks and on our newly-curated ads banner dataset. For practical usage, we build our solution into a graphical system that facilitates user studies. We demonstrate that our designs attract more subjective preference than baselines by significant margins. Our code, models, dataset, graphical system, and demos are available at https://github.com/salesforce/LayoutDETR.