Abstract:Sequential recommendation (SR) systems excel at capturing users' dynamic preferences by leveraging their interaction histories. Most existing SR systems assign a single embedding vector to each item to represent its features, and various types of models are adopted to combine these item embeddings into a sequence representation vector to capture the user intent. However, we argue that this representation alone is insufficient to capture an item's multi-faceted nature (e.g., movie genres, starring actors). Besides, users often exhibit complex and varied preferences within these facets (e.g., liking both action and musical films in the facet of genre), which are challenging to fully represent. To address the issues above, we propose a novel structure called Facet-Aware Multi-Head Mixture-of-Experts Model for Sequential Recommendation (FAME). We leverage sub-embeddings from each head in the last multi-head attention layer to predict the next item separately. This approach captures the potential multi-faceted nature of items without increasing model complexity. A gating mechanism integrates recommendations from each head and dynamically determines their importance. Furthermore, we introduce a Mixture-of-Experts (MoE) network in each attention head to disentangle various user preferences within each facet. Each expert within the MoE focuses on a specific preference. A learnable router network is adopted to compute the importance weight for each expert and aggregate them. We conduct extensive experiments on four public sequential recommendation datasets and the results demonstrate the effectiveness of our method over existing baseline models.
Abstract:Retrieval-Augmented Generation (RAG) has been an effective approach to mitigate hallucinations in large language models (LLMs) by incorporating up-to-date and domain-specific knowledge. Recently, there has been a trend of storing up-to-date or copyrighted data in RAG knowledge databases instead of using it for LLM training. This practice has raised concerns about Membership Inference Attacks (MIAs), which aim to detect if a specific target document is stored in the RAG system's knowledge database so as to protect the rights of data producers. While research has focused on enhancing the trustworthiness of RAG systems, existing MIAs for RAG systems remain largely insufficient. Previous work either relies solely on the RAG system's judgment or is easily influenced by other documents or the LLM's internal knowledge, which is unreliable and lacks explainability. To address these limitations, we propose a Mask-Based Membership Inference Attacks (MBA) framework. Our framework first employs a masking algorithm that effectively masks a certain number of words in the target document. The masked text is then used to prompt the RAG system, and the RAG system is required to predict the mask values. If the target document appears in the knowledge database, the masked text will retrieve the complete target document as context, allowing for accurate mask prediction. Finally, we adopt a simple yet effective threshold-based method to infer the membership of target document by analyzing the accuracy of mask prediction. Our mask-based approach is more document-specific, making the RAG system's generation less susceptible to distractions from other documents or the LLM's internal knowledge. Extensive experiments demonstrate the effectiveness of our approach compared to existing baseline models.
Abstract:Many few-shot segmentation (FSS) methods use cross attention to fuse support foreground (FG) into query features, regardless of the quadratic complexity. A recent advance Mamba can also well capture intra-sequence dependencies, yet the complexity is only linear. Hence, we aim to devise a cross (attention-like) Mamba to capture inter-sequence dependencies for FSS. A simple idea is to scan on support features to selectively compress them into the hidden state, which is then used as the initial hidden state to sequentially scan query features. Nevertheless, it suffers from (1) support forgetting issue: query features will also gradually be compressed when scanning on them, so the support features in hidden state keep reducing, and many query pixels cannot fuse sufficient support features; (2) intra-class gap issue: query FG is essentially more similar to itself rather than to support FG, i.e., query may prefer not to fuse support features but their own ones from the hidden state, yet the success of FSS relies on the effective use of support information. To tackle them, we design a hybrid Mamba network (HMNet), including (1) a support recapped Mamba to periodically recap the support features when scanning query, so the hidden state can always contain rich support information; (2) a query intercepted Mamba to forbid the mutual interactions among query pixels, and encourage them to fuse more support features from the hidden state. Consequently, the support information is better utilized, leading to better performance. Extensive experiments have been conducted on two public benchmarks, showing the superiority of HMNet. The code is available at https://github.com/Sam1224/HMNet.
Abstract:Approximate nearest neighbor (ANN) query in high-dimensional Euclidean space is a key operator in database systems. For this query, quantization is a popular family of methods developed for compressing vectors and reducing memory consumption. Recently, a method called RaBitQ achieves the state-of-the-art performance among these methods. It produces better empirical performance in both accuracy and efficiency when using the same compression rate and provides rigorous theoretical guarantees. However, the method is only designed for compressing vectors at high compression rates (32x) and lacks support for achieving higher accuracy by using more space. In this paper, we introduce a new quantization method to address this limitation by extending RaBitQ. The new method inherits the theoretical guarantees of RaBitQ and achieves the asymptotic optimality in terms of the trade-off between space and error bounds as to be proven in this study. Additionally, we present efficient implementations of the method, enabling its application to ANN queries to reduce both space and time consumption. Extensive experiments on real-world datasets confirm that our method consistently outperforms the state-of-the-art baselines in both accuracy and efficiency when using the same amount of memory.
Abstract:Range-filtering approximate nearest neighbor (RFANN) search is attracting increasing attention in academia and industry. Given a set of data objects, each being a pair of a high-dimensional vector and a numeric value, an RFANN query with a vector and a numeric range as parameters returns the data object whose numeric value is in the query range and whose vector is nearest to the query vector. To process this query, a recent study proposes to build $O(n^2)$ dedicated graph-based indexes for all possible query ranges to enable efficient processing on a database of $n$ objects. As storing all these indexes is prohibitively expensive, the study constructs compressed indexes instead, which reduces the memory consumption considerably. However, this incurs suboptimal performance because the compression is lossy. In this study, instead of materializing a compressed index for every possible query range in preparation for querying, we materialize graph-based indexes, called elemental graphs, for a moderate number of ranges. We then provide an effective and efficient algorithm that during querying can construct an index for any query range using the elemental graphs. We prove that the time needed to construct such an index is low. We also cover an experimental study on real-world datasets that provides evidence that the materialized elemental graphs only consume moderate space and that the proposed method is capable of superior and stable query performance across different query workloads.
Abstract:Despite the success of Heterogeneous Graph Neural Networks (HGNNs) in modeling real-world Heterogeneous Information Networks (HINs), challenges such as expressiveness limitations and over-smoothing have prompted researchers to explore Graph Transformers (GTs) for enhanced HIN representation learning. However, research on GT in HINs remains limited, with two key shortcomings in existing work: (1) A node's neighbors at different distances in HINs convey diverse semantics. Unfortunately, existing methods ignore such differences and uniformly treat neighbors within a given distance in a coarse manner, which results in semantic confusion. (2) Nodes in HINs have various types, each with unique semantics. Nevertheless, existing methods mix nodes of different types during neighbor aggregation, hindering the capture of proper correlations between nodes of diverse types. To bridge these gaps, we design an innovative structure named (k,t)-ring neighborhood, where nodes are initially organized by their distance, forming different non-overlapping k-ring neighborhoods for each distance. Within each k-ring structure, nodes are further categorized into different groups according to their types, thus emphasizing the heterogeneity of both distances and types in HINs naturally. Based on this structure, we propose a novel Hierarchical Heterogeneous Graph Transformer (HHGT) model, which seamlessly integrates a Type-level Transformer for aggregating nodes of different types within each k-ring neighborhood, followed by a Ring-level Transformer for aggregating different k-ring neighborhoods in a hierarchical manner. Extensive experiments are conducted on downstream tasks to verify HHGT's superiority over 14 baselines, with a notable improvement of up to 24.75% in NMI and 29.25% in ARI for node clustering task on the ACM dataset compared to the best baseline.
Abstract:Recent advancements in few-shot segmentation (FSS) have exploited pixel-by-pixel matching between query and support features, typically based on cross attention, which selectively activate query foreground (FG) features that correspond to the same-class support FG features. However, due to the large receptive fields in deep layers of the backbone, the extracted query and support FG features are inevitably mingled with background (BG) features, impeding the FG-FG matching in cross attention. Hence, the query FG features are fused with less support FG features, i.e., the support information is not well utilized. This paper presents a novel plug-in termed ambiguity elimination network (AENet), which can be plugged into any existing cross attention-based FSS methods. The main idea is to mine discriminative query FG regions to rectify the ambiguous FG features, increasing the proportion of FG information, so as to suppress the negative impacts of the doped BG features. In this way, the FG-FG matching is naturally enhanced. We plug AENet into three baselines CyCTR, SCCAN and HDMNet for evaluation, and their scores are improved by large margins, e.g., the 1-shot performance of SCCAN can be improved by 3.0%+ on both PASCAL-5$^i$ and COCO-20$^i$. The code is available at https://github.com/Sam1224/AENet.
Abstract:The widespread adoption of scalable mobile sensing has led to large amounts of time series data for real-world applications. A fundamental application is multivariate time series forecasting (MTSF), which aims to predict future time series values based on historical observations. Existing MTSF methods suffer from limited parameterization and small-scale training data. Recently, Large language models (LLMs) have been introduced in time series, which achieve promising forecasting performance but incur heavy computational costs. To solve these challenges, we propose TimeCMA, an LLM-empowered framework for time series forecasting with cross-modality alignment. We design a dual-modality encoding module with two branches, where the time series encoding branch extracts relatively low-quality yet pure embeddings of time series through an inverted Transformer. In addition, the LLM-empowered encoding branch wraps the same time series as prompts to obtain high-quality yet entangled prompt embeddings via a Pre-trained LLM. Then, we design a cross-modality alignment module to retrieve high-quality and pure time series embeddings from the prompt embeddings. Moreover, we develop a time series forecasting module to decode the aligned embeddings while capturing dependencies among multiple variables for forecasting. Notably, we tailor the prompt to encode sufficient temporal information into a last token and design the last token embedding storage to reduce computational costs. Extensive experiments on real data offer insight into the accuracy and efficiency of the proposed framework.
Abstract:Searching for approximate nearest neighbors (ANN) in the high-dimensional Euclidean space is a pivotal problem. Recently, with the help of fast SIMD-based implementations, Product Quantization (PQ) and its variants can often efficiently and accurately estimate the distances between the vectors and have achieved great success in the in-memory ANN search. Despite their empirical success, we note that these methods do not have a theoretical error bound and are observed to fail disastrously on some real-world datasets. Motivated by this, we propose a new randomized quantization method named RaBitQ, which quantizes $D$-dimensional vectors into $D$-bit strings. RaBitQ guarantees a sharp theoretical error bound and provides good empirical accuracy at the same time. In addition, we introduce efficient implementations of RaBitQ, supporting to estimate the distances with bitwise operations or SIMD-based operations. Extensive experiments on real-world datasets confirm that (1) our method outperforms PQ and its variants in terms of accuracy-efficiency trade-off by a clear margin and (2) its empirical performance is well-aligned with our theoretical analysis.
Abstract:This paper focuses on the integration of generative techniques into spatial-temporal data mining, considering the significant growth and diverse nature of spatial-temporal data. With the advancements in RNNs, CNNs, and other non-generative techniques, researchers have explored their application in capturing temporal and spatial dependencies within spatial-temporal data. However, the emergence of generative techniques such as LLMs, SSL, Seq2Seq and diffusion models has opened up new possibilities for enhancing spatial-temporal data mining further. The paper provides a comprehensive analysis of generative technique-based spatial-temporal methods and introduces a standardized framework specifically designed for the spatial-temporal data mining pipeline. By offering a detailed review and a novel taxonomy of spatial-temporal methodology utilizing generative techniques, the paper enables a deeper understanding of the various techniques employed in this field. Furthermore, the paper highlights promising future research directions, urging researchers to delve deeper into spatial-temporal data mining. It emphasizes the need to explore untapped opportunities and push the boundaries of knowledge to unlock new insights and improve the effectiveness and efficiency of spatial-temporal data mining. By integrating generative techniques and providing a standardized framework, the paper contributes to advancing the field and encourages researchers to explore the vast potential of generative techniques in spatial-temporal data mining.