Abstract:Approximate nearest neighbor (ANN) query in high-dimensional Euclidean space is a key operator in database systems. For this query, quantization is a popular family of methods developed for compressing vectors and reducing memory consumption. Recently, a method called RaBitQ achieves the state-of-the-art performance among these methods. It produces better empirical performance in both accuracy and efficiency when using the same compression rate and provides rigorous theoretical guarantees. However, the method is only designed for compressing vectors at high compression rates (32x) and lacks support for achieving higher accuracy by using more space. In this paper, we introduce a new quantization method to address this limitation by extending RaBitQ. The new method inherits the theoretical guarantees of RaBitQ and achieves the asymptotic optimality in terms of the trade-off between space and error bounds as to be proven in this study. Additionally, we present efficient implementations of the method, enabling its application to ANN queries to reduce both space and time consumption. Extensive experiments on real-world datasets confirm that our method consistently outperforms the state-of-the-art baselines in both accuracy and efficiency when using the same amount of memory.
Abstract:Range-filtering approximate nearest neighbor (RFANN) search is attracting increasing attention in academia and industry. Given a set of data objects, each being a pair of a high-dimensional vector and a numeric value, an RFANN query with a vector and a numeric range as parameters returns the data object whose numeric value is in the query range and whose vector is nearest to the query vector. To process this query, a recent study proposes to build $O(n^2)$ dedicated graph-based indexes for all possible query ranges to enable efficient processing on a database of $n$ objects. As storing all these indexes is prohibitively expensive, the study constructs compressed indexes instead, which reduces the memory consumption considerably. However, this incurs suboptimal performance because the compression is lossy. In this study, instead of materializing a compressed index for every possible query range in preparation for querying, we materialize graph-based indexes, called elemental graphs, for a moderate number of ranges. We then provide an effective and efficient algorithm that during querying can construct an index for any query range using the elemental graphs. We prove that the time needed to construct such an index is low. We also cover an experimental study on real-world datasets that provides evidence that the materialized elemental graphs only consume moderate space and that the proposed method is capable of superior and stable query performance across different query workloads.