Abstract:Automatic Speech Recognition (ASR) traditionally assumes known domains, but adding data from a new domain raises concerns about computational inefficiencies linked to retraining models on both existing and new domains. Fine-tuning solely on new domain risks Catastrophic Forgetting (CF). To address this, Lifelong Learning (LLL) algorithms have been proposed for ASR. Prior research has explored techniques such as Elastic Weight Consolidation, Knowledge Distillation, and Replay, all of which necessitate either additional parameters or access to prior domain data. We propose Sequential Model Editing as a novel method to continually learn new domains in ASR systems. Different than previous methods, our approach does not necessitate access to prior datasets or the introduction of extra parameters. Our study demonstrates up to 15% Word Error Rate Reduction (WERR) over fine-tuning baseline, and superior efficiency over other LLL techniques on CommonVoice English multi-accent dataset.
Abstract:Connectionist Temporal Classification (CTC) models are popular for their balance between speed and performance for Automatic Speech Recognition (ASR). However, these CTC models still struggle in other areas, such as personalization towards custom words. A recent approach explores Contextual Adapters, wherein an attention-based biasing model for CTC is used to improve the recognition of custom entities. While this approach works well with enough data, we showcase that it isn't an effective strategy for low-resource languages. In this work, we propose a supervision loss for smoother training of the Contextual Adapters. Further, we explore a multilingual strategy to improve performance with limited training data. Our method achieves 48% F1 improvement in retrieving unseen custom entities for a low-resource language. Interestingly, as a by-product of training the Contextual Adapters, we see a 5-11% Word Error Rate (WER) reduction in the performance of the base CTC model as well.