L3I
Abstract:This article details our participation (L3iTC) in the FinLLM Challenge Task 2024, focusing on two key areas: Task 1, financial text classification, and Task 2, financial text summarization. To address these challenges, we fine-tuned several large language models (LLMs) to optimize performance for each task. Specifically, we used 4-bit quantization and LoRA to determine which layers of the LLMs should be trained at a lower precision. This approach not only accelerated the fine-tuning process on the training data provided by the organizers but also enabled us to run the models on low GPU memory. Our fine-tuned models achieved third place for the financial classification task with an F1-score of 0.7543 and secured sixth place in the financial summarization task on the official test datasets.
Abstract:The growing impact of climate change on coastal areas, particularly active but fragile regions, necessitates collaboration among diverse stakeholders and disciplines to formulate effective environmental protection policies. We introduce a novel specialized corpus comprising 2,491 sentences from 410 scientific abstracts concerning coastal areas, for the Automatic Term Extraction (ATE) and Classification (ATC) tasks. Inspired by the ARDI framework, focused on the identification of Actors, Resources, Dynamics and Interactions, we automatically extract domain terms and their distinct roles in the functioning of coastal systems by leveraging monolingual and multilingual transformer models. The evaluation demonstrates consistent results, achieving an F1 score of approximately 80\% for automated term extraction and F1 of 70\% for extracting terms and their labels. These findings are promising and signify an initial step towards the development of a specialized Knowledge Base dedicated to coastal areas.
Abstract:Document-level relation extraction (DocRE) is an active area of research in natural language processing (NLP) concerned with identifying and extracting relationships between entities beyond sentence boundaries. Compared to the more traditional sentence-level relation extraction, DocRE provides a broader context for analysis and is more challenging because it involves identifying relationships that may span multiple sentences or paragraphs. This task has gained increased interest as a viable solution to build and populate knowledge bases automatically from unstructured large-scale documents (e.g., scientific papers, legal contracts, or news articles), in order to have a better understanding of relationships between entities. This paper aims to provide a comprehensive overview of recent advances in this field, highlighting its different applications in comparison to sentence-level relation extraction.
Abstract:Large language models (LLMs) have been leveraged for several years now, obtaining state-of-the-art performance in recognizing entities from modern documents. For the last few months, the conversational agent ChatGPT has "prompted" a lot of interest in the scientific community and public due to its capacity of generating plausible-sounding answers. In this paper, we explore this ability by probing it in the named entity recognition and classification (NERC) task in primary sources (e.g., historical newspapers and classical commentaries) in a zero-shot manner and by comparing it with state-of-the-art LM-based systems. Our findings indicate several shortcomings in identifying entities in historical text that range from the consistency of entity annotation guidelines, entity complexity, and code-switching, to the specificity of prompting. Moreover, as expected, the inaccessibility of historical archives to the public (and thus on the Internet) also impacts its performance.
Abstract:This paper introduces the DocILE benchmark with the largest dataset of business documents for the tasks of Key Information Localization and Extraction and Line Item Recognition. It contains 6.7k annotated business documents, 100k synthetically generated documents, and nearly~1M unlabeled documents for unsupervised pre-training. The dataset has been built with knowledge of domain- and task-specific aspects, resulting in the following key features: (i) annotations in 55 classes, which surpasses the granularity of previously published key information extraction datasets by a large margin; (ii) Line Item Recognition represents a highly practical information extraction task, where key information has to be assigned to items in a table; (iii) documents come from numerous layouts and the test set includes zero- and few-shot cases as well as layouts commonly seen in the training set. The benchmark comes with several baselines, including RoBERTa, LayoutLMv3 and DETR-based Table Transformer. These baseline models were applied to both tasks of the DocILE benchmark, with results shared in this paper, offering a quick starting point for future work. The dataset and baselines are available at https://github.com/rossumai/docile.
Abstract:Archive collections are nowadays mostly available through search engines interfaces, which allow a user to retrieve documents by issuing queries. The study of these collections may be, however, impaired by some aspects of search engines, such as the overwhelming number of documents returned or the lack of contextual knowledge provided. New methods that could work independently or in combination with search engines are then required to access these collections. In this position paper, we propose to extend TimeLine Summarization (TLS) methods on archive collections to assist in their studies. We provide an overview of existing TLS methods and we describe a conceptual framework for an Archive TimeLine Summarization (ATLS) system, which aims to generate informative, readable and interpretable timelines.
Abstract:Identifying and exploring emerging trends in the news is becoming more essential than ever with many changes occurring worldwide due to the global health crises. However, most of the recent research has focused mainly on detecting trends in social media, thus, benefiting from social features (e.g. likes and retweets on Twitter) which helped the task as they can be used to measure the engagement and diffusion rate of content. Yet, formal text data, unlike short social media posts, comes with a longer, less restricted writing format, and thus, more challenging. In this paper, we focus our study on emerging trends detection in financial news articles about Microsoft, collected before and during the start of the COVID-19 pandemic (July 2019 to July 2020). We make the dataset accessible and propose a strong baseline (Contextual Leap2Trend) for exploring the dynamics of similarities between pairs of keywords based on topic modelling and term frequency. Finally, we evaluate against a gold standard (Google Trends) and present noteworthy real-world scenarios regarding the influence of the pandemic on Microsoft.
Abstract:Automatic term extraction (ATE) is a Natural Language Processing (NLP) task that eases the effort of manually identifying terms from domain-specific corpora by providing a list of candidate terms. As units of knowledge in a specific field of expertise, extracted terms are not only beneficial for several terminographical tasks, but also support and improve several complex downstream tasks, e.g., information retrieval, machine translation, topic detection, and sentiment analysis. ATE systems, along with annotated datasets, have been studied and developed widely for decades, but recently we observed a surge in novel neural systems for the task at hand. Despite a large amount of new research on ATE, systematic survey studies covering novel neural approaches are lacking. We present a comprehensive survey of deep learning-based approaches to ATE, with a focus on Transformer-based neural models. The study also offers a comparison between these systems and previous ATE approaches, which were based on feature engineering and non-neural supervised learning algorithms.
Abstract:Automatic term extraction plays an essential role in domain language understanding and several natural language processing downstream tasks. In this paper, we propose a comparative study on the predictive power of Transformers-based pretrained language models toward term extraction in a multi-language cross-domain setting. Besides evaluating the ability of monolingual models to extract single- and multi-word terms, we also experiment with ensembles of mono- and multilingual models by conducting the intersection or union on the term output sets of different language models. Our experiments have been conducted on the ACTER corpus covering four specialized domains (Corruption, Wind energy, Equitation, and Heart failure) and three languages (English, French, and Dutch), and on the RSDO5 Slovenian corpus covering four additional domains (Biomechanics, Chemistry, Veterinary, and Linguistics). The results show that the strategy of employing monolingual models outperforms the state-of-the-art approaches from the related work leveraging multilingual models, regarding all the languages except Dutch and French if the term extraction task excludes the extraction of named entity terms. Furthermore, by combining the outputs of the two best performing models, we achieve significant improvements.
Abstract:This paper summarizes the joint participation of the Trading Central Labs and the L3i laboratory of the University of La Rochelle on both sub-tasks of the Shared Task FinSim-4 evaluation campaign. The first sub-task aims to enrich the 'Fortia ESG taxonomy' with new lexicon entries while the second one aims to classify sentences to either 'sustainable' or 'unsustainable' with respect to ESG (Environment, Social and Governance) related factors. For the first sub-task, we proposed a model based on pre-trained Sentence-BERT models to project sentences and concepts in a common space in order to better represent ESG concepts. The official task results show that our system yields a significant performance improvement compared to the baseline and outperforms all other submissions on the first sub-task. For the second sub-task, we combine the RoBERTa model with a feed-forward multi-layer perceptron in order to extract the context of sentences and classify them. Our model achieved high accuracy scores (over 92%) and was ranked among the top 5 systems.