Abstract:As the Coronavirus Disease 2019 (COVID-19) continues to impact many aspects of life and the global healthcare systems, the adoption of rapid and effective screening methods to prevent further spread of the virus and lessen the burden on healthcare providers is a necessity. As a cheap and widely accessible medical image modality, point-of-care ultrasound (POCUS) imaging allows radiologists to identify symptoms and assess severity through visual inspection of the chest ultrasound images. Combined with the recent advancements in computer science, applications of deep learning techniques in medical image analysis have shown promising results, demonstrating that artificial intelligence-based solutions can accelerate the diagnosis of COVID-19 and lower the burden on healthcare professionals. However, the lack of a huge amount of well-annotated data poses a challenge in building effective deep neural networks in the case of novel diseases and pandemics. Motivated by this, we present COVID-Net USPro, an explainable few-shot deep prototypical network, that monitors and detects COVID-19 positive cases with high precision and recall from minimal ultrasound images. COVID-Net USPro achieves 99.65% overall accuracy, 99.7% recall and 99.67% precision for COVID-19 positive cases when trained with only 5 shots. The analytic pipeline and results were verified by our contributing clinician with extensive experience in POCUS interpretation, ensuring that the network makes decisions based on actual patterns.
Abstract:As the global population continues to face significant negative impact by the on-going COVID-19 pandemic, there has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost and effective imaging modality of choice in the COVID-19 clinical workflow. A major barrier with widespread adoption of POCUS in the COVID-19 clinical workflow is the scarcity of expert clinicians that can interpret POCUS examinations, leading to considerable interest in deep learning-driven clinical decision support systems to tackle this challenge. A major challenge to building deep neural networks for COVID-19 screening using POCUS is the heterogeneity in the types of probes used to capture ultrasound images (e.g., convex vs. linear probes), which can lead to very different visual appearances. In this study, we explore the impact of leveraging extended linear-convex ultrasound augmentation learning on producing enhanced deep neural networks for COVID-19 assessment, where we conduct data augmentation on convex probe data alongside linear probe data that have been transformed to better resemble convex probe data. Experimental results using an efficient deep columnar anti-aliased convolutional neural network designed via a machined-driven design exploration strategy (which we name COVID-Net US-X) show that the proposed extended linear-convex ultrasound augmentation learning significantly increases performance, with a gain of 5.1% in test accuracy and 13.6% in AUC.
Abstract:Ever since the declaration of COVID-19 as a pandemic by the World Health Organization in 2020, the world has continued to struggle in controlling and containing the spread of the COVID-19 pandemic caused by the SARS-CoV-2 virus. This has been especially challenging with the rise of the Omicron variant and its subvariants and recombinants, which has led to a significant increase in patients seeking treatment and has put a tremendous burden on hospitals and healthcare systems. A major challenge faced during the pandemic has been the prediction of survival and the risk for additional injuries in individual patients, which requires significant clinical expertise and additional resources to avoid further complications. In this study we propose COVID-Net Biochem, an explainability-driven framework for building machine learning models to predict patient survival and the chance of developing kidney injury during hospitalization from clinical and biochemistry data in a transparent and systematic manner. In the first "clinician-guided initial design" phase, we prepared a benchmark dataset of carefully selected clinical and biochemistry data based on clinician assessment, which were curated from a patient cohort of 1366 patients at Stony Brook University. A collection of different machine learning models with a diversity of gradient based boosting tree architectures and deep transformer architectures was designed and trained specifically for survival and kidney injury prediction based on the carefully selected clinical and biochemical markers.