As the global population continues to face significant negative impact by the on-going COVID-19 pandemic, there has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost and effective imaging modality of choice in the COVID-19 clinical workflow. A major barrier with widespread adoption of POCUS in the COVID-19 clinical workflow is the scarcity of expert clinicians that can interpret POCUS examinations, leading to considerable interest in deep learning-driven clinical decision support systems to tackle this challenge. A major challenge to building deep neural networks for COVID-19 screening using POCUS is the heterogeneity in the types of probes used to capture ultrasound images (e.g., convex vs. linear probes), which can lead to very different visual appearances. In this study, we explore the impact of leveraging extended linear-convex ultrasound augmentation learning on producing enhanced deep neural networks for COVID-19 assessment, where we conduct data augmentation on convex probe data alongside linear probe data that have been transformed to better resemble convex probe data. Experimental results using an efficient deep columnar anti-aliased convolutional neural network designed via a machined-driven design exploration strategy (which we name COVID-Net US-X) show that the proposed extended linear-convex ultrasound augmentation learning significantly increases performance, with a gain of 5.1% in test accuracy and 13.6% in AUC.