Music generation is the task of generating music or music-like sounds from a model or algorithm.
Music captioning, or the task of generating a natural language description of music, is useful for both music understanding and controllable music generation. Training captioning models, however, typically requires high-quality music caption data which is scarce compared to metadata (e.g., genre, mood, etc.). As a result, it is common to use large language models (LLMs) to synthesize captions from metadata to generate training data for captioning models, though this process imposes a fixed stylization and entangles factual information with natural language style. As a more direct approach, we propose metadata-based captioning. We train a metadata prediction model to infer detailed music metadata from audio and then convert it into expressive captions via pre-trained LLMs at inference time. Compared to a strong end-to-end baseline trained on LLM-generated captions derived from metadata, our method: (1) achieves comparable performance in less training time over end-to-end captioners, (2) offers flexibility to easily change stylization post-training, enabling output captions to be tailored to specific stylistic and quality requirements, and (3) can be prompted with audio and partial metadata to enable powerful metadata imputation or in-filling--a common task for organizing music data.
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
This paper introduces TRAILDREAMS, a framework that uses a large language model (LLM) to automate the production of movie trailers. The purpose of LLM is to select key visual sequences and impactful dialogues, and to help TRAILDREAMS to generate audio elements such as music and voiceovers. The goal is to produce engaging and visually appealing trailers efficiently. In comparative evaluations, TRAILDREAMS surpasses current state-of-the-art trailer generation methods in viewer ratings. However, it still falls short when compared to real, human-crafted trailers. While TRAILDREAMS demonstrates significant promise and marks an advancement in automated creative processes, further improvements are necessary to bridge the quality gap with traditional trailers.
The rise of music large language models (LLMs) demands robust methods of evaluating output quality, especially in distinguishing high-quality compositions from "garbage music". Curiously, we observe that the standard cross-entropy loss -- a core training metric -- often decrease when models encounter systematically corrupted music, undermining its validity as a standalone quality indicator. To investigate this paradox, we introduce noise injection experiment, where controlled noise signal of varying lengths are injected into musical contexts. We hypothesize that a model's loss reacting positively to these perturbations, specifically a sharp increase ("Peak" area) for short injection, can serve as a proxy for its ability to discern musical integrity. Experiments with MusicGen models in the audio waveform domain confirm that Music LLMs respond more strongly to local, texture-level disruptions than to global semantic corruption. Beyond exposing this bias, our results highlight a new principle: the shape of the loss curve -- rather than its absolute value -- encodes critical information about the quality of the generated content (i.e., model behavior). We envision this profile-based evaluation as a label-free, model-intrinsic framework for assessing musical quality -- opening the door to more principled training objectives and sharper benchmarks.
Music often shares notable parallels with language, motivating the use of pretrained large language models (LLMs) for symbolic music understanding and generation. Despite growing interest, the practical effectiveness of adapting instruction-tuned LLMs to symbolic music remains insufficiently characterized. We present a controlled comparative study of finetuning strategies for ABC-based generation and understanding, comparing an off-the-shelf instruction-tuned backbone to domain-adapted variants and a music-specialized LLM baseline. Across multiple symbolic music corpora and evaluation signals, we provide some insights into adaptation choices for symbolic music applications. We highlight the domain adaptation vs.~preserving prior information tradeoff as well as the distinct behaviour of metrics used to measure the domain adaptation for symbolic music.
Large language models (LLMs) enable powerful zero-shot recommendations by leveraging broad contextual knowledge, yet predictive uncertainty and embedded biases threaten reliability and fairness. This paper studies how uncertainty and fairness evaluations affect the accuracy, consistency, and trustworthiness of LLM-generated recommendations. We introduce a benchmark of curated metrics and a dataset annotated for eight demographic attributes (31 categorical values) across two domains: movies and music. Through in-depth case studies, we quantify predictive uncertainty (via entropy) and demonstrate that Google DeepMind's Gemini 1.5 Flash exhibits systematic unfairness for certain sensitive attributes; measured similarity-based gaps are SNSR at 0.1363 and SNSV at 0.0507. These disparities persist under prompt perturbations such as typographical errors and multilingual inputs. We further integrate personality-aware fairness into the RecLLM evaluation pipeline to reveal personality-linked bias patterns and expose trade-offs between personalization and group fairness. We propose a novel uncertainty-aware evaluation methodology for RecLLMs, present empirical insights from deep uncertainty case studies, and introduce a personality profile-informed fairness benchmark that advances explainability and equity in LLM recommendations. Together, these contributions establish a foundation for safer, more interpretable RecLLMs and motivate future work on multi-model benchmarks and adaptive calibration for trustworthy deployment.
Generative diffusion models are extensively used in unsupervised and self-supervised machine learning with the aim to generate new samples from a probability distribution estimated with a set of known samples. They have demonstrated impressive results in replicating dense, real-world contents such as images, musical pieces, or human languages. This work investigates their application to the numerical simulation of incompressible fluid flows, with a view toward incorporating physical constraints such as incompressibility in the probabilistic forecasting framework enabled by generative networks. For that purpose, we explore different conditional, score-based diffusion models where the divergence-free constraint is imposed by the Leray spectral projector, and autoregressive conditioning is aimed at stabilizing the forecasted flow snapshots at distant time horizons. The proposed models are run on a benchmark turbulence problem, namely a Kolmogorov flow, which allows for a fairly detailed analytical and numerical treatment and thus simplifies the evaluation of the numerical methods used to simulate it. Numerical experiments of increasing complexity are performed in order to compare the advantages and limitations of the diffusion models we have implemented and appraise their performances, including: (i) in-distribution assessment over the same time horizons and for similar physical conditions as the ones seen during training; (ii) rollout predictions over time horizons unseen during training; and (iii) out-of-distribution tests for forecasting flows markedly different from those seen during training. In particular, these results illustrate the ability of diffusion models to reproduce the main statistical characteristics of Kolmogorov turbulence in scenarios departing from the ones they were trained on.
Audio codecs power discrete music generative modelling, music streaming, and immersive media by shrinking PCM audio to bandwidth-friendly bitrates. Recent works have gravitated towards processing in the spectral domain; however, spectrogram domains typically struggle with phase modeling, which is naturally complex-valued. Most frequency-domain neural codecs either disregard phase information or encode it as two separate real-valued channels, limiting spatial fidelity. This entails the need to introduce adversarial discriminators at the expense of convergence speed and training stability to compensate for the inadequate representation power of the audio signal. In this work we introduce an end-to-end complex-valued RVQ-VAE audio codec that preserves magnitude-phase coupling across the entire analysis-quantization-synthesis pipeline and removes adversarial discriminators and diffusion post-filters. Without GANs or diffusion, we match or surpass much longer-trained baselines in-domain and reach SOTA out-of-domain performance on phase coherence and waveform fidelity. Compared to standard baselines that train for hundreds of thousands of steps, our model, which reduces the training budget by an order of magnitude, is markedly more compute-efficient while preserving high perceptual quality.
Dance-to-music generation aims to generate music that is aligned with dance movements. Existing approaches typically rely on body motion features extracted from a single human dancer and limited dance-to-music datasets, which restrict their performance and applicability to real-world scenarios involving multiple dancers and non-human dancers. In this paper, we propose PF-D2M, a universal diffusion-based dance-to-music generation model that incorporates visual features extracted from dance videos. PF-D2M is trained with a progressive training strategy that effectively addresses data scarcity and generalization challenges. Both objective and subjective evaluations show that PF-D2M achieves state-of-the-art performance in dance-music alignment and music quality.
Morphing techniques generate artificial biometric samples that combine features from multiple individuals, allowing each contributor to be verified against a single enrolled template. While extensively studied in face recognition, this vulnerability remains largely unexplored in voice biometrics. Prior work on voice morphing is computationally expensive, non-scalable, and limited to acoustically similar identity pairs, constraining practical deployment. Moreover, existing sound-morphing methods target audio textures, music, or environmental sounds and are not transferable to voice identity manipulation. We propose VoxMorph, a zero-shot framework that produces high-fidelity voice morphs from as little as five seconds of audio per subject without model retraining. Our method disentangles vocal traits into prosody and timbre embeddings, enabling fine-grained interpolation of speaking style and identity. These embeddings are fused via Spherical Linear Interpolation (Slerp) and synthesized using an autoregressive language model coupled with a Conditional Flow Matching network. VoxMorph achieves state-of-the-art performance, delivering a 2.6x gain in audio quality, a 73% reduction in intelligibility errors, and a 67.8% morphing attack success rate on automated speaker verification systems under strict security thresholds. This work establishes a practical and scalable paradigm for voice morphing with significant implications for biometric security. The code and dataset are available on our project page: https://vcbsl.github.io/VoxMorph/