Abstract:Recent advances in generative models have made it possible to create high-quality, coherent music, with some systems delivering production-level output. Yet, most existing models focus solely on generating music from scratch, limiting their usefulness for musicians who want to integrate such models into a human, iterative composition workflow. In this paper we introduce STAGE, our STemmed Accompaniment GEneration model, fine-tuned from the state-of-the-art MusicGen to generate single-stem instrumental accompaniments conditioned on a given mixture. Inspired by instruction-tuning methods for language models, we extend the transformer's embedding matrix with a context token, enabling the model to attend to a musical context through prefix-based conditioning. Compared to the baselines, STAGE yields accompaniments that exhibit stronger coherence with the input mixture, higher audio quality, and closer alignment with textual prompts. Moreover, by conditioning on a metronome-like track, our framework naturally supports tempo-constrained generation, achieving state-of-the-art alignment with the target rhythmic structure--all without requiring any additional tempo-specific module. As a result, STAGE offers a practical, versatile tool for interactive music creation that can be readily adopted by musicians in real-world workflows.
Abstract:Loops--short audio segments designed for seamless repetition--are central to many music genres, particularly those rooted in dance and electronic styles. However, current generative music models struggle to produce truly loopable audio, as generating a short waveform alone does not guarantee a smooth transition from its endpoint back to its start, often resulting in audible discontinuities. Loops--short audio segments designed for seamless repetition--are central to many music genres, particularly those rooted in dance and electronic styles. However, current generative music models struggle to produce truly loopable audio, as generating a short waveform alone does not guarantee a smooth transition from its endpoint back to its start, often resulting in audible discontinuities. We address this gap by modifying a non-autoregressive model (MAGNeT) to generate tokens in a circular pattern, letting the model attend to the beginning of the audio when creating its ending. This inference-only approach results in generations that are aware of future context and loop naturally, without the need for any additional training or data. We evaluate the consistency of loop transitions by computing token perplexity around the seam of the loop, observing a 55% improvement. Blind listening tests further confirm significant perceptual gains over baseline methods, improving mean ratings by 70%. Taken together, these results highlight the effectiveness of inference-only approaches in improving generative models and underscore the advantages of non-autoregressive methods for context-aware music generation.