Abstract:An increasing number of models have achieved great performance in remote sensing tasks with the recent development of Large Language Models (LLMs) and Visual Language Models (VLMs). However, these models are constrained to basic vision and language instruction-tuning tasks, facing challenges in complex remote sensing applications. Additionally, these models lack specialized expertise in professional domains. To address these limitations, we propose a LLM-driven remote sensing intelligent agent named RS-Agent. Firstly, RS-Agent is powered by a large language model (LLM) that acts as its "Central Controller," enabling it to understand and respond to various problems intelligently. Secondly, our RS-Agent integrates many high-performance remote sensing image processing tools, facilitating multi-tool and multi-turn conversations. Thirdly, our RS-Agent can answer professional questions by leveraging robust knowledge documents. We conducted experiments using several datasets, e.g., RSSDIVCS, RSVQA, and DOTAv1. The experimental results demonstrate that our RS-Agent delivers outstanding performance in many tasks, i.e., scene classification, visual question answering, and object counting tasks.
Abstract:Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at https://github.com/Spico197/Mirror .
Abstract:Sentence-by-sentence information extraction from long documents is an exhausting and error-prone task. As the indicator of document skeleton, catalogs naturally chunk documents into segments and provide informative cascade semantics, which can help to reduce the search space. Despite their usefulness, catalogs are hard to be extracted without the assist from external knowledge. For documents that adhere to a specific template, regular expressions are practical to extract catalogs. However, handcrafted heuristics are not applicable when processing documents from different sources with diverse formats. To address this problem, we build a large manually annotated corpus, which is the first dataset for the Catalog Extraction from Documents (CED) task. Based on this corpus, we propose a transition-based framework for parsing documents into catalog trees. The experimental results demonstrate that our proposed method outperforms baseline systems and shows a good ability to transfer. We believe the CED task could fill the gap between raw text segments and information extraction tasks on extremely long documents. Data and code are available at \url{https://github.com/Spico197/CatalogExtraction}
Abstract:Image matting refers to the estimation of the opacity of foreground objects. It requires correct contours and fine details of foreground objects for the matting results. To better accomplish human image matting tasks, we propose the Cascade Image Matting Network with Deformable Graph Refinement, which can automatically predict precise alpha mattes from single human images without any additional inputs. We adopt a network cascade architecture to perform matting from low-to-high resolution, which corresponds to coarse-to-fine optimization. We also introduce the Deformable Graph Refinement (DGR) module based on graph neural networks (GNNs) to overcome the limitations of convolutional neural networks (CNNs). The DGR module can effectively capture long-range relations and obtain more global and local information to help produce finer alpha mattes. We also reduce the computation complexity of the DGR module by dynamically predicting the neighbors and apply DGR module to higher--resolution features. Experimental results demonstrate the ability of our CasDGR to achieve state-of-the-art performance on synthetic datasets and produce good results on real human images.