Abstract:This paper presents a data-driven electrical machine design (EMD) framework using wound-rotor synchronous generator (WRSG) as a design example. Unlike traditional preliminary EMD processes that heavily rely on expertise, this framework leverages an artificial-intelligence based expert database, to provide preliminary designs directly from user specifications. Initial data is generated using 2D finite element (FE) machine models by sweeping fundamental design variables including machine length and diameter, enabling scalable machine geometry with machine performance for each design is recorded. This data trains a Metamodel of Optimal Prognosis (MOP)-based surrogate model, which maps design variables to key performance indicators (KPIs). Once trained, guided by metaheuristic algorithms, the surrogate model can generate thousands of geometric scalable designs, covering a wide power range, forming an AI expert database to guide future preliminary design. The framework is validated with a 30kVA WRSG design case. A prebuilt WRSG database, covering power from 10 to 60kVA, is validated by FE simulation. Design No.1138 is selected from database and compared with conventional design. Results show No.1138 achieves a higher power density of 2.21 kVA/kg in just 5 seconds, compared to 2.02 kVA/kg obtained using traditional method, which take several days. The developed AI expert database also serves as a high-quality data source for further developing AI models for automatic electrical machine design.
Abstract:The locate-then-edit paradigm has shown significant promise for knowledge editing (KE) in Large Language Models (LLMs). While previous methods perform well on single-hop fact recall tasks, they consistently struggle with multi-hop factual recall tasks involving newly edited knowledge. In this paper, leveraging tools in mechanistic interpretability, we first identify that in multi-hop tasks, LLMs tend to retrieve implicit subject knowledge from deeper MLP layers, unlike single-hop tasks, which rely on earlier layers. This distinction explains the poor performance of current methods in multi-hop queries, as they primarily focus on editing shallow layers, leaving deeper layers unchanged. To address this, we propose IFMET, a novel locate-then-edit KE approach designed to edit both shallow and deep MLP layers. IFMET employs multi-hop editing prompts and supplementary sets to locate and modify knowledge across different reasoning stages. Experimental results demonstrate that IFMET significantly improves performance on multi-hop factual recall tasks, effectively overcoming the limitations of previous locate-then-edit methods.
Abstract:Traditional sperm morphology analysis is based on tedious manual annotation. Automated morphology analysis of a high number of sperm requires accurate segmentation of each sperm part and quantitative morphology evaluation. State-of-the-art instance-aware part segmentation networks follow a "detect-then-segment" paradigm. However, due to sperm's slim shape, their segmentation suffers from large context loss and feature distortion due to bounding box cropping and resizing during ROI Align. Moreover, morphology measurement of sperm tail is demanding because of the long and curved shape and its uneven width. This paper presents automated techniques to measure sperm morphology parameters automatically and quantitatively. A novel attention-based instance-aware part segmentation network is designed to reconstruct lost contexts outside bounding boxes and to fix distorted features, by refining preliminary segmented masks through merging features extracted by feature pyramid network. An automated centerline-based tail morphology measurement method is also proposed, in which an outlier filtering method and endpoint detection algorithm are designed to accurately reconstruct tail endpoints. Experimental results demonstrate that the proposed network outperformed the state-of-the-art top-down RP-R-CNN by 9.2% [AP]_vol^p, and the proposed automated tail morphology measurement method achieved high measurement accuracies of 95.34%,96.39%,91.2% for length, width and curvature, respectively.