Abstract:We introduce Seed-TTS, a family of large-scale autoregressive text-to-speech (TTS) models capable of generating speech that is virtually indistinguishable from human speech. Seed-TTS serves as a foundation model for speech generation and excels in speech in-context learning, achieving performance in speaker similarity and naturalness that matches ground truth human speech in both objective and subjective evaluations. With fine-tuning, we achieve even higher subjective scores across these metrics. Seed-TTS offers superior controllability over various speech attributes such as emotion and is capable of generating highly expressive and diverse speech for speakers in the wild. Furthermore, we propose a self-distillation method for speech factorization, as well as a reinforcement learning approach to enhance model robustness, speaker similarity, and controllability. We additionally present a non-autoregressive (NAR) variant of the Seed-TTS model, named $\text{Seed-TTS}_\text{DiT}$, which utilizes a fully diffusion-based architecture. Unlike previous NAR-based TTS systems, $\text{Seed-TTS}_\text{DiT}$ does not depend on pre-estimated phoneme durations and performs speech generation through end-to-end processing. We demonstrate that this variant achieves comparable performance to the language model-based variant and showcase its effectiveness in speech editing. We encourage readers to listen to demos at \url{https://bytedancespeech.github.io/seedtts_tech_report}.
Abstract:We propose PolyVoice, a language model-based framework for speech-to-speech translation (S2ST) system. Our framework consists of two language models: a translation language model and a speech synthesis language model. We use discretized speech units, which are generated in a fully unsupervised way, and thus our framework can be used for unwritten languages. For the speech synthesis part, we adopt the existing VALL-E X approach and build a unit-based audio language model. This grants our framework the ability to preserve the voice characteristics and the speaking style of the original speech. We examine our system on Chinese $\rightarrow$ English and English $\rightarrow$ Spanish pairs. Experimental results show that our system can generate speech with high translation quality and audio quality. Speech samples are available at https://speechtranslation.github.io/polyvoice.
Abstract:Expressive text-to-speech (TTS) has become a hot research topic recently, mainly focusing on modeling prosody in speech. Prosody modeling has several challenges: 1) the extracted pitch used in previous prosody modeling works have inevitable errors, which hurts the prosody modeling; 2) different attributes of prosody (e.g., pitch, duration and energy) are dependent on each other and produce the natural prosody together; and 3) due to high variability of prosody and the limited amount of high-quality data for TTS training, the distribution of prosody cannot be fully shaped. To tackle these issues, we propose ProsoSpeech, which enhances the prosody using quantized latent vectors pre-trained on large-scale unpaired and low-quality text and speech data. Specifically, we first introduce a word-level prosody encoder, which quantizes the low-frequency band of the speech and compresses prosody attributes in the latent prosody vector (LPV). Then we introduce an LPV predictor, which predicts LPV given word sequence. We pre-train the LPV predictor on large-scale text and low-quality speech data and fine-tune it on the high-quality TTS dataset. Finally, our model can generate expressive speech conditioned on the predicted LPV. Experimental results show that ProsoSpeech can generate speech with richer prosody compared with baseline methods.