Abstract:Low-rank adaptation (LoRA) has emerged as a leading parameter-efficient fine-tuning technique for adapting large foundation models, yet it often locks adapters into suboptimal minima near their initialization. This hampers model generalization and limits downstream operators such as adapter merging and pruning. Here, we propose CoTo, a progressive training strategy that gradually increases adapters' activation probability over the course of fine-tuning. By stochastically deactivating adapters, CoTo encourages more balanced optimization and broader exploration of the loss landscape. We provide a theoretical analysis showing that CoTo promotes layer-wise dropout stability and linear mode connectivity, and we adopt a cooperative-game approach to quantify each adapter's marginal contribution. Extensive experiments demonstrate that CoTo consistently boosts single-task performance, enhances multi-task merging accuracy, improves pruning robustness, and reduces training overhead, all while remaining compatible with diverse LoRA variants. Code is available at https://github.com/zwebzone/coto.
Abstract:Human Activity Recognition (HAR) with wearable sensors is challenged by limited interpretability, which significantly impacts cross-dataset generalization. To address this challenge, we propose Motion-Primitive Transformer (MoPFormer), a novel self-supervised framework that enhances interpretability by tokenizing inertial measurement unit signals into semantically meaningful motion primitives and leverages a Transformer architecture to learn rich temporal representations. MoPFormer comprises two-stages. first stage is to partition multi-channel sensor streams into short segments and quantizing them into discrete "motion primitive" codewords, while the second stage enriches those tokenized sequences through a context-aware embedding module and then processes them with a Transformer encoder. The proposed MoPFormer can be pre-trained using a masked motion-modeling objective that reconstructs missing primitives, enabling it to develop robust representations across diverse sensor configurations. Experiments on six HAR benchmarks demonstrate that MoPFormer not only outperforms state-of-the-art methods but also successfully generalizes across multiple datasets. Most importantly, the learned motion primitives significantly enhance both interpretability and cross-dataset performance by capturing fundamental movement patterns that remain consistent across similar activities regardless of dataset origin.
Abstract:Message-passing graph neural networks (MPNNs) and structural features (SFs) are cornerstones for the link prediction task. However, as a common and intuitive mode of understanding, the potential of visual perception has been overlooked in the MPNN community. For the first time, we equip MPNNs with vision structural awareness by proposing an effective framework called Graph Vision Network (GVN), along with a more efficient variant (E-GVN). Extensive empirical results demonstrate that with the proposed frameworks, GVN consistently benefits from the vision enhancement across seven link prediction datasets, including challenging large-scale graphs. Such improvements are compatible with existing state-of-the-art (SOTA) methods and GVNs achieve new SOTA results, thereby underscoring a promising novel direction for link prediction.
Abstract:Low-Rank Adaptation (LoRA) is a parameter-efficient technique for rapidly fine-tuning foundation models. In standard LoRA training dynamics, models tend to quickly converge to a local optimum near the initialization. However, this local optimum may not be ideal for out-of-distribution data or tasks such as merging and pruning. In this work, we propose a novel progressive training strategy for LoRA with random layer dropping. This strategy also optimizes the Shapley value of LoRA parameters in each layer, treating each layer as a player in a cooperative game. We refer to this method as Cooperative LoRA (CopRA). Our experimental results demonstrate that parameters trained with CopRA exhibit linear mode connectivity, which enables efficient model merging. This also paves the way for federated learning and multi-task learning via LoRA merging. Additionally, by optimizing the Shapley value, CopRA shows superior performance in pruning tasks.
Abstract:Procedural Content Generation via Machine Learning (PCGML) has enhanced game content creation, yet challenges in controllability and limited training data persist. This study addresses these issues by distilling a constructive PCG algorithm into a controllable PCGML model. We first generate a large amount of content with a constructive algorithm and label it using a Large Language Model (LLM). We use these synthetic labels to condition two PCGML models for content-specific generation, a diffusion model and the five-dollar model. This neural network distillation process ensures that the generation aligns with the original algorithm while introducing controllability through plain text. We define this text-conditioned PCGML as a Text-to-game-Map (T2M) task, offering an alternative to prevalent text-to-image multi-modal tasks. We compare our distilled models with the baseline constructive algorithm. Our analysis of the variety, accuracy, and quality of our generation demonstrates the efficacy of distilling constructive methods into controllable text-conditioned PCGML models.
Abstract:Wave Function Collapse (WFC) is a widely used tile-based algorithm in procedural content generation, including textures, objects, and scenes. However, the current WFC algorithm and related research lack the ability to generate commercialized large-scale or infinite content due to constraint conflict and time complexity costs. This paper proposes a Nested WFC (N-WFC) algorithm framework to reduce time complexity. To avoid conflict and backtracking problems, we offer a complete and sub-complete tileset preparation strategy, which requires only a small number of tiles to generate aperiodic and deterministic infinite content. We also introduce the weight-brush system that combines N-WFC and sub-complete tileset, proving its suitability for game design. Our contribution addresses WFC's challenge in massive content generation and provides a theoretical basis for implementing concrete games.