Abstract:Procedural Content Generation via Machine Learning (PCGML) has enhanced game content creation, yet challenges in controllability and limited training data persist. This study addresses these issues by distilling a constructive PCG algorithm into a controllable PCGML model. We first generate a large amount of content with a constructive algorithm and label it using a Large Language Model (LLM). We use these synthetic labels to condition two PCGML models for content-specific generation, a diffusion model and the five-dollar model. This neural network distillation process ensures that the generation aligns with the original algorithm while introducing controllability through plain text. We define this text-conditioned PCGML as a Text-to-game-Map (T2M) task, offering an alternative to prevalent text-to-image multi-modal tasks. We compare our distilled models with the baseline constructive algorithm. Our analysis of the variety, accuracy, and quality of our generation demonstrates the efficacy of distilling constructive methods into controllable text-conditioned PCGML models.
Abstract:The Connections puzzle is a word association game published daily by The New York Times (NYT). In this game, players are asked to find groups of four words that are connected by a common theme. While solving a given Connections puzzle requires both semantic knowledge and abstract reasoning, generating novel puzzles additionally requires a form of metacognition: generators must be able to accurately model the downstream reasoning of potential solvers. In this paper, we investigate the ability of the GPT family of Large Language Models (LLMs) to generate challenging and creative word games for human players. We start with an analysis of the word game Connections and the unique challenges it poses as a Procedural Content Generation (PCG) domain. We then propose a method for generating Connections puzzles using LLMs by adapting a Tree of Thoughts (ToT) prompting approach. We evaluate this method by conducting a user study, asking human players to compare AI-generated puzzles against published Connections puzzles. Our findings show that LLMs are capable puzzle creators, and can generate diverse sets of enjoyable, challenging, and creative Connections puzzles as judged by human users.
Abstract:The Connections puzzle published each day by the New York Times tasks players with dividing a bank of sixteen words into four groups of four words that each relate to a common theme. Solving the puzzle requires both common linguistic knowledge (i.e. definitions and typical usage) as well as, in many cases, lateral or abstract thinking. This is because the four categories ascend in complexity, with the most challenging category often requiring thinking about words in uncommon ways or as parts of larger phrases. We investigate the capacity for automated AI systems to play Connections and explore the game's potential as an automated benchmark for abstract reasoning and a way to measure the semantic information encoded by data-driven linguistic systems. In particular, we study both a sentence-embedding baseline and modern large language models (LLMs). We report their accuracy on the task, measure the impacts of chain-of-thought prompting, and discuss their failure modes. Overall, we find that the Connections task is challenging yet feasible, and a strong test-bed for future work.