Abstract:In multimodal sentiment analysis, collecting text data is often more challenging than video or audio due to higher annotation costs and inconsistent automatic speech recognition (ASR) quality. To address this challenge, our study has developed a robust model that effectively integrates multimodal sentiment information, even in the absence of text modality. Specifically, we have developed a Double-Flow Self-Distillation Framework, including Unified Modality Cross-Attention (UMCA) and Modality Imagination Autoencoder (MIA), which excels at processing both scenarios with complete modalities and those with missing text modality. In detail, when the text modality is missing, our framework uses the LLM-based model to simulate the text representation from the audio modality, while the MIA module supplements information from the other two modalities to make the simulated text representation similar to the real text representation. To further align the simulated and real representations, and to enable the model to capture the continuous nature of sample orders in sentiment valence regression tasks, we have also introduced the Rank-N Contrast (RNC) loss function. When testing on the CMU-MOSEI, our model achieved outstanding performance on MAE and significantly outperformed other models when text modality is missing. The code is available at: https://github.com/WarmCongee/SDUMC
Abstract:In this paper, we propose a novel framework for recognizing both discrete and dimensional emotions. In our framework, deep features extracted from foundation models are used as robust acoustic and visual representations of raw video. Three different structures based on attention-guided feature gathering (AFG) are designed for deep feature fusion. Then, we introduce a joint decoding structure for emotion classification and valence regression in the decoding stage. A multi-task loss based on uncertainty is also designed to optimize the whole process. Finally, by combining three different structures on the posterior probability level, we obtain the final predictions of discrete and dimensional emotions. When tested on the dataset of multimodal emotion recognition challenge (MER 2023), the proposed framework yields consistent improvements in both emotion classification and valence regression. Our final system achieves state-of-the-art performance and ranks third on the leaderboard on MER-MULTI sub-challenge.