Abstract:Human-like environment recognition by musculoskeletal humanoids is important for task realization in real complex environments and for use as dummies for test subjects. Humans integrate various sensory information to perceive their surroundings, and hearing is particularly useful for recognizing objects out of view or out of touch. In this research, we aim to realize human-like auditory environmental recognition and task realization for musculoskeletal humanoids by equipping them with a human-like auditory processing system. Humans realize sound-based environmental recognition by estimating directions of the sound sources and detecting environmental sounds based on changes in the time and frequency domain of incoming sounds and the integration of auditory information in the central nervous system. We propose a human mimetic auditory information processing system, which consists of three components: the human mimetic binaural ear unit, which mimics human ear structure and characteristics, the sound source direction estimation system, and the environmental sound detection system, which mimics processing in the central nervous system. We apply it to Musashi, a human mimetic musculoskeletal humanoid, and have it perform tasks that require sound information outside of view in real noisy environments to confirm the usefulness of the proposed methods.
Abstract:For a robot with redundant sensors and actuators distributed throughout its body, it is difficult to construct a controller or a neural network using all of them due to computational cost and complexity. Therefore, it is effective to extract functionally related sensors and actuators, group them, and construct a controller or a network for each of these groups. In this study, the functional and spatial connections among sensors and actuators are embedded into a graph structure and a method for automatic grouping is developed. Taking a musculoskeletal humanoid with a large number of redundant muscles as an example, this method automatically divides all the muscles into regions such as the forearm, upper arm, scapula, neck, etc., which has been done by humans based on a geometric model. The functional relationship among the muscles and the spatial relationship of the neural connections are calculated without a geometric model.
Abstract:This paper summarizes an autonomous driving project by musculoskeletal humanoids. The musculoskeletal humanoid, which mimics the human body in detail, has redundant sensors and a flexible body structure. These characteristics are suitable for motions with complex environmental contact, and the robot is expected to sit down on the car seat, step on the acceleration and brake pedals, and operate the steering wheel by both arms. We reconsider the developed hardware and software of the musculoskeletal humanoid Musashi in the context of autonomous driving. The respective components of autonomous driving are conducted using the benefits of the hardware and software. Finally, Musashi succeeded in the pedal and steering wheel operations with recognition.
Abstract:Musculoskeletal humanoids have been developed by imitating humans and expected to perform natural and dynamic motions as well as humans. To achieve desired motions stably in current musculoskeletal humanoids is not easy because they cannot maintain the sufficient moment arm of muscles in various postures. In this research, we discuss planar structures that spread across joint structures such as ligament and planar muscles and the application of planar interskeletal structures to humanoid robots. Next, we develop MusashiOLegs, a musculoskeletal legs which has planar interskeletal structures and conducts several experiments to verify the importance of planar interskeletal structures.