Abstract:To develop Musashi as a musculoskeletal humanoid platform to investigate learning control systems, we aimed for a body with flexible musculoskeletal structure, redundant sensors, and easily reconfigurable structure. For this purpose, we develop joint modules that can directly measure joint angles, muscle modules that can realize various muscle routes, and nonlinear elastic units with soft structures, etc. Next, we develop MusashiLarm, a musculoskeletal platform composed of only joint modules, muscle modules, generic bone frames, muscle wire units, and a few attachments. Finally, we develop Musashi, a musculoskeletal humanoid platform which extends MusashiLarm to the whole body design, and conduct several basic experiments and learning control experiments to verify the effectiveness of its concept.
Abstract:The estimation and management of motor temperature are important for the continuous movements of robots. In this study, we propose an online learning method of thermal model parameters of motors for an accurate estimation of motor core temperature. Also, we propose a management method of motor core temperature using the updated model and anomaly detection method of motors. Finally, we apply this method to the muscles of the musculoskeletal humanoid and verify the ability of continuous movements.
Abstract:The flexible musculoskeletal hand is difficult to modelize, and its model can change constantly due to deterioration over time, irreproducibility of initialization, etc. Also, for object recognition, contact detection, and contact control using the hand, it is desirable not to use a neural network trained for each task, but to use only one integrated network. Therefore, we develop a method to acquire a sensor state equation of the musculoskeletal hand using a recurrent neural network with parametric bias. By using this network, the hand can realize recognition of the grasped object, contact simulation, detection, and control, and can cope with deterioration over time, irreproducibility of initialization, etc. by updating parametric bias. We apply this study to the hand of the musculoskeletal humanoid Musashi and show its effectiveness.
Abstract:The flexible under-actuated musculoskeletal hand is superior in its adaptability and impact resistance. On the other hand, since the relationship between sensors and actuators cannot be uniquely determined, almost all its controls are based on feedforward controls. When grasping and using a tool, the contact state of the hand gradually changes due to the inertia of the tool or impact of action, and the initial contact state is hardly kept. In this study, we propose a system that trains the predictive network of sensor state transition using the actual robot sensor information, and keeps the initial contact state by a feedback control using the network. We conduct experiments of hammer hitting, vacuuming, and brooming, and verify the effectiveness of this study.
Abstract:While the musculoskeletal humanoid has various biomimetic benefits, the modeling of its complex structure is difficult, and many learning-based systems have been developed so far. There are various methods, such as control methods using acquired relationships between joints and muscles represented by a data table or neural network, and state estimation methods using Extended Kalman Filter or table search. In this study, we construct a Musculoskeletal AutoEncoder representing the relationship among joint angles, muscle tensions, and muscle lengths, and propose a unified method of state estimation, control, and simulation of musculoskeletal humanoids using it. By updating the Musculoskeletal AutoEncoder online using the actual robot sensor information, we can continuously conduct more accurate state estimation, control, and simulation than before the online learning. We conducted several experiments using the musculoskeletal humanoid Musashi, and verified the effectiveness of this study.
Abstract:This paper summarizes an autonomous driving project by musculoskeletal humanoids. The musculoskeletal humanoid, which mimics the human body in detail, has redundant sensors and a flexible body structure. These characteristics are suitable for motions with complex environmental contact, and the robot is expected to sit down on the car seat, step on the acceleration and brake pedals, and operate the steering wheel by both arms. We reconsider the developed hardware and software of the musculoskeletal humanoid Musashi in the context of autonomous driving. The respective components of autonomous driving are conducted using the benefits of the hardware and software. Finally, Musashi succeeded in the pedal and steering wheel operations with recognition.
Abstract:The tendon-driven musculoskeletal humanoid has many benefits that human beings have, but the modeling of its complex muscle and bone structures is difficult and conventional model-based controls cannot realize intended movements. Therefore, a learning control mechanism that acquires nonlinear relationships between joint angles, muscle tensions, and muscle lengths from the actual robot is necessary. In this study, we propose a system which runs the learning control mechanism for a long time to keep the self-body image of the musculoskeletal humanoid correct at all times. Also, we show that the musculoskeletal humanoid can conduct position control, torque control, and variable stiffness control using this self-body image. We conduct a long-time self-body image acquisition experiment lasting 3 hours, evaluate variable stiffness control using the self-body image, etc., and discuss the superiority and practicality of the self-body image acquisition of musculoskeletal structures, comprehensively.
Abstract:Musculoskeletal humanoids have been developed by imitating humans and expected to perform natural and dynamic motions as well as humans. To achieve desired motions stably in current musculoskeletal humanoids is not easy because they cannot maintain the sufficient moment arm of muscles in various postures. In this research, we discuss planar structures that spread across joint structures such as ligament and planar muscles and the application of planar interskeletal structures to humanoid robots. Next, we develop MusashiOLegs, a musculoskeletal legs which has planar interskeletal structures and conducts several experiments to verify the importance of planar interskeletal structures.
Abstract:Human hands can not only grasp objects of various shape and size and manipulate them in hands but also exert such a large gripping force that they can support the body in the situations such as dangling a bar and climbing a ladder. On the other hand, it is difficult for most robot hands to manage both. Therefore in this paper we developed the hand which can grasp various objects and exert large gripping force. To develop such hand, we focused on the thumb CM joint with wide range of motion and the MP joints of four fingers with the DOF of abduction and adduction. Based on the hand with large gripping force and flexibility using machined spring, we applied above mentioned joint mechanism to the hand. The thumb CM joint has wide range of motion because of the combination of three machined springs and MP joints of four fingers have variable rigidity mechanism instead of driving each joint independently in order to move joint in limited space and by limited actuators. Using the developed hand, we achieved the grasping of various objects, supporting a large load and several motions with an arm.