Abstract:To develop Musashi as a musculoskeletal humanoid platform to investigate learning control systems, we aimed for a body with flexible musculoskeletal structure, redundant sensors, and easily reconfigurable structure. For this purpose, we develop joint modules that can directly measure joint angles, muscle modules that can realize various muscle routes, and nonlinear elastic units with soft structures, etc. Next, we develop MusashiLarm, a musculoskeletal platform composed of only joint modules, muscle modules, generic bone frames, muscle wire units, and a few attachments. Finally, we develop Musashi, a musculoskeletal humanoid platform which extends MusashiLarm to the whole body design, and conduct several basic experiments and learning control experiments to verify the effectiveness of its concept.
Abstract:Human-like environment recognition by musculoskeletal humanoids is important for task realization in real complex environments and for use as dummies for test subjects. Humans integrate various sensory information to perceive their surroundings, and hearing is particularly useful for recognizing objects out of view or out of touch. In this research, we aim to realize human-like auditory environmental recognition and task realization for musculoskeletal humanoids by equipping them with a human-like auditory processing system. Humans realize sound-based environmental recognition by estimating directions of the sound sources and detecting environmental sounds based on changes in the time and frequency domain of incoming sounds and the integration of auditory information in the central nervous system. We propose a human mimetic auditory information processing system, which consists of three components: the human mimetic binaural ear unit, which mimics human ear structure and characteristics, the sound source direction estimation system, and the environmental sound detection system, which mimics processing in the central nervous system. We apply it to Musashi, a human mimetic musculoskeletal humanoid, and have it perform tasks that require sound information outside of view in real noisy environments to confirm the usefulness of the proposed methods.
Abstract:For a robot with redundant sensors and actuators distributed throughout its body, it is difficult to construct a controller or a neural network using all of them due to computational cost and complexity. Therefore, it is effective to extract functionally related sensors and actuators, group them, and construct a controller or a network for each of these groups. In this study, the functional and spatial connections among sensors and actuators are embedded into a graph structure and a method for automatic grouping is developed. Taking a musculoskeletal humanoid with a large number of redundant muscles as an example, this method automatically divides all the muscles into regions such as the forearm, upper arm, scapula, neck, etc., which has been done by humans based on a geometric model. The functional relationship among the muscles and the spatial relationship of the neural connections are calculated without a geometric model.
Abstract:The body structure of an anatomically correct tendon-driven musculoskeletal humanoid is complex, and the difference between its geometric model and the actual robot is very large because expressing the complex routes of tendon wires in a geometric model is very difficult. If we move a tendon-driven musculoskeletal humanoid by the tendon wire lengths of the geometric model, unintended muscle tension and slack will emerge. In some cases, this can lead to the wreckage of the actual robot. To solve this problem, we focused on reciprocal innervation in the human nervous system, and then implemented antagonist inhibition control (AIC) based on the reflex. This control makes it possible to avoid unnecessary internal muscle tension and slack of tendon wires caused by model error, and to perform wide range motion safely for a long time. To verify its effectiveness, we applied AIC to the upper limb of the tendon-driven musculoskeletal humanoid, Kengoro, and succeeded in dangling for 14 minutes and doing pull-ups.
Abstract:The human forearm is composed of two long, thin bones called the radius and the ulna, and rotates using two axle joints. We aimed to develop a forearm based on the body proportion, weight ratio, muscle arrangement, and joint performance of the human body in order to bring out its benefits. For this, we need to miniaturize the muscle modules. To approach this task, we arranged two muscle motors inside one muscle module, and used the space effectively by utilizing common parts. In addition, we enabled the muscle module to also be used as the bone structure. Moreover, we used miniature motors and developed a way to dissipate the motor heat to the bone structure. Through these approaches, we succeeded in developing a forearm with a radioulnar joint based on the body proportion, weight ratio, muscle arrangement, and joint performance of the human body, while keeping maintainability and reliability. Also, we performed some motions such as soldering, opening a book, turning a screw, and badminton swinging using the benefits of the radioulnar structure, which have not been discussed before, and verified that Kengoro can realize skillful motions using the radioulnar joint like a human.
Abstract:The flexible musculoskeletal hand is difficult to modelize, and its model can change constantly due to deterioration over time, irreproducibility of initialization, etc. Also, for object recognition, contact detection, and contact control using the hand, it is desirable not to use a neural network trained for each task, but to use only one integrated network. Therefore, we develop a method to acquire a sensor state equation of the musculoskeletal hand using a recurrent neural network with parametric bias. By using this network, the hand can realize recognition of the grasped object, contact simulation, detection, and control, and can cope with deterioration over time, irreproducibility of initialization, etc. by updating parametric bias. We apply this study to the hand of the musculoskeletal humanoid Musashi and show its effectiveness.
Abstract:The estimation and management of motor temperature are important for the continuous movements of robots. In this study, we propose an online learning method of thermal model parameters of motors for an accurate estimation of motor core temperature. Also, we propose a management method of motor core temperature using the updated model and anomaly detection method of motors. Finally, we apply this method to the muscles of the musculoskeletal humanoid and verify the ability of continuous movements.
Abstract:The flexible under-actuated musculoskeletal hand is superior in its adaptability and impact resistance. On the other hand, since the relationship between sensors and actuators cannot be uniquely determined, almost all its controls are based on feedforward controls. When grasping and using a tool, the contact state of the hand gradually changes due to the inertia of the tool or impact of action, and the initial contact state is hardly kept. In this study, we propose a system that trains the predictive network of sensor state transition using the actual robot sensor information, and keeps the initial contact state by a feedback control using the network. We conduct experiments of hammer hitting, vacuuming, and brooming, and verify the effectiveness of this study.
Abstract:While the musculoskeletal humanoid has various biomimetic benefits, the modeling of its complex structure is difficult, and many learning-based systems have been developed so far. There are various methods, such as control methods using acquired relationships between joints and muscles represented by a data table or neural network, and state estimation methods using Extended Kalman Filter or table search. In this study, we construct a Musculoskeletal AutoEncoder representing the relationship among joint angles, muscle tensions, and muscle lengths, and propose a unified method of state estimation, control, and simulation of musculoskeletal humanoids using it. By updating the Musculoskeletal AutoEncoder online using the actual robot sensor information, we can continuously conduct more accurate state estimation, control, and simulation than before the online learning. We conducted several experiments using the musculoskeletal humanoid Musashi, and verified the effectiveness of this study.
Abstract:This paper summarizes an autonomous driving project by musculoskeletal humanoids. The musculoskeletal humanoid, which mimics the human body in detail, has redundant sensors and a flexible body structure. These characteristics are suitable for motions with complex environmental contact, and the robot is expected to sit down on the car seat, step on the acceleration and brake pedals, and operate the steering wheel by both arms. We reconsider the developed hardware and software of the musculoskeletal humanoid Musashi in the context of autonomous driving. The respective components of autonomous driving are conducted using the benefits of the hardware and software. Finally, Musashi succeeded in the pedal and steering wheel operations with recognition.