Abstract:Large Language Models (LLMs) have fast become an essential tools to many conversational chatbots due to their ability to provide coherent answers for varied queries. Datasets used to train these LLMs are often a mix of generic and synthetic samples, thus lacking the verification needed to provide correct and verifiable answers for T.V. News. We collect and share a large collection of QA pairs extracted from transcripts of news recordings from various news-channels across the United States. Resultant QA pairs are then used to fine-tune an off-the-shelf LLM model. Our model surpasses base models of similar size on several open LLM benchmarks. We further integrate and propose a RAG method to improve contextualization of our answers and also point it to a verifiable news recording.
Abstract:Image-based 3D Virtual Try-ON (VTON) aims to sculpt the 3D human according to person and clothes images, which is data-efficient (i.e., getting rid of expensive 3D data) but challenging. Recent text-to-3D methods achieve remarkable improvement in high-fidelity 3D human generation, demonstrating its potential for 3D virtual try-on. Inspired by the impressive success of personalized diffusion models (e.g., Dreambooth and LoRA) for 2D VTON, it is straightforward to achieve 3D VTON by integrating the personalization technique into the diffusion-based text-to-3D framework. However, employing the personalized module in a pre-trained diffusion model (e.g., StableDiffusion (SD)) would degrade the model's capability for multi-view or multi-domain synthesis, which is detrimental to the geometry and texture optimization guided by Score Distillation Sampling (SDS) loss. In this work, we propose a novel customizing 3D human try-on model, named \textbf{DreamVTON}, to separately optimize the geometry and texture of the 3D human. Specifically, a personalized SD with multi-concept LoRA is proposed to provide the generative prior about the specific person and clothes, while a Densepose-guided ControlNet is exploited to guarantee consistent prior about body pose across various camera views. Besides, to avoid the inconsistent multi-view priors from the personalized SD dominating the optimization, DreamVTON introduces a template-based optimization mechanism, which employs mask templates for geometry shape learning and normal/RGB templates for geometry/texture details learning. Furthermore, for the geometry optimization phase, DreamVTON integrates a normal-style LoRA into personalized SD to enhance normal map generative prior, facilitating smooth geometry modeling.
Abstract:The rapid advancement of Large Language Models (LLMs) highlights the urgent need for evolving evaluation methodologies that keep pace with improvements in language comprehension and information processing. However, traditional benchmarks, which are often static, fail to capture the continually changing information landscape, leading to a disparity between the perceived and actual effectiveness of LLMs in ever-changing real-world scenarios. Furthermore, these benchmarks do not adequately measure the models' capabilities over a broader temporal range or their adaptability over time. We examine current LLMs in terms of temporal generalization and bias, revealing that various temporal biases emerge in both language likelihood and prognostic prediction. This serves as a caution for LLM practitioners to pay closer attention to mitigating temporal biases. Also, we propose an evaluation framework Freshbench for dynamically generating benchmarks from the most recent real-world prognostication prediction. Our code is available at https://github.com/FreedomIntelligence/FreshBench. The dataset will be released soon.