Abstract:Crowd counting is an important problem in computer vision due to its wide range of applications in image understanding. Currently, this problem is typically addressed using deep learning approaches, such as Convolutional Neural Networks (CNNs) and Transformers. However, deep networks are data-driven and are prone to overfitting, especially when the available labeled crowd dataset is limited. To overcome this limitation, we have designed a pipeline that utilizes a diffusion model to generate extensive training data. We are the first to generate images conditioned on a location dot map (a binary dot map that specifies the location of human heads) with a diffusion model. We are also the first to use these diverse synthetic data to augment the crowd counting models. Our proposed smoothed density map input for ControlNet significantly improves ControlNet's performance in generating crowds in the correct locations. Also, Our proposed counting loss for the diffusion model effectively minimizes the discrepancies between the location dot map and the crowd images generated. Additionally, our innovative guidance sampling further directs the diffusion process toward regions where the generated crowd images align most accurately with the location dot map. Collectively, we have enhanced ControlNet's ability to generate specified objects from a location dot map, which can be used for data augmentation in various counting problems. Moreover, our framework is versatile and can be easily adapted to all kinds of counting problems. Extensive experiments demonstrate that our framework improves the counting performance on the ShanghaiTech, NWPU-Crowd, UCF-QNRF, and TRANCOS datasets, showcasing its effectiveness.
Abstract:Accurate deformable object manipulation (DOM) is essential for achieving autonomy in robotic surgery, where soft tissues are being displaced, stretched, and dissected. Many DOM methods can be powered by simulation, which ensures realistic deformation by adhering to the governing physical constraints and allowing for model prediction and control. However, real soft objects in robotic surgery, such as membranes and soft tissues, have complex, anisotropic physical parameters that a simulation with simple initialization from cameras may not fully capture. To use the simulation techniques in real surgical tasks, the "real-to-sim" gap needs to be properly compensated. In this work, we propose an online, adaptive parameter tuning approach for simulation optimization that (1) bridges the real-to-sim gap between a physics simulation and observations obtained 3D perceptions through estimating a residual mapping and (2) optimizes its stiffness parameters online. Our method ensures a small residual gap between the simulation and observation and improves the simulation's predictive capabilities. The effectiveness of the proposed mechanism is evaluated in the manipulation of both a thin-shell and volumetric tissue, representative of most tissue scenarios. This work contributes to the advancement of simulation-based deformable tissue manipulation and holds potential for improving surgical autonomy.