Abstract:The workshop is affiliated with 33nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2024) August 26~30, 2023 / Pasadena, CA, USA. It is designed as a half-day event, extending over four hours from 9:00 to 12:30 PST time. It accommodates both in-person and virtual attendees (via Zoom), ensuring a flexible participation mode. The agenda is thoughtfully crafted to include a diverse range of sessions: two keynote speeches that promise to provide insightful perspectives, two dedicated paper presentation sessions, an interactive panel discussion to foster dialogue among experts which facilitates deeper dives into specific topics, and a 15-minute coffee break. The workshop website: https://sites.google.com/view/interaiworkshops/home.
Abstract:High-quality demonstrations are necessary when learning complex and challenging manipulation tasks. In this work, we introduce an approach to puppeteer a robot by controlling a virtual robot in an augmented reality setting. Our system allows for retaining the advantages of being intuitive from a physical leader-follower side while avoiding the unnecessary use of expensive physical setup. In addition, the user is endowed with additional information using augmented reality. We validate our system with a pilot study n=10 on a block stacking and rice scooping tasks where the majority rates the system favorably. Oculus App and corresponding ROS code are available on the project website: https://ar-puppeteer.github.io/
Abstract:The emergence of Large Vision Models (LVMs) is following in the footsteps of the recent prosperity of Large Language Models (LLMs) in following years. However, there's a noticeable gap in structured research applying LVMs to Human-Robot Interaction (HRI), despite extensive evidence supporting the efficacy of vision models in enhancing interactions between humans and robots. Recognizing the vast and anticipated potential, we introduce an initial design space that incorporates domain-specific LVMs, chosen for their superior performance over normal models. We delve into three primary dimensions: HRI contexts, vision-based tasks, and specific domains. The empirical validation was implemented among 15 experts across six evaluated metrics, showcasing the primary efficacy in relevant decision-making scenarios. We explore the process of ideation and potential application scenarios, envisioning this design space as a foundational guideline for future HRI system design, emphasizing accurate domain alignment and model selection.
Abstract:This paper presents findings from an exploratory needfinding study investigating the research current status and potential participation of the competitions on the robotics community towards four human-centric topics: safety, privacy, explainability, and federated learning. We conducted a survey with 34 participants across three distinguished European robotics consortia, nearly 60% of whom possessed over five years of research experience in robotics. Our qualitative and quantitative analysis revealed that current mainstream robotic researchers prioritize safety and explainability, expressing a greater willingness to invest in further research in these areas. Conversely, our results indicate that privacy and federated learning garner less attention and are perceived to have lower potential. Additionally, the study suggests a lack of enthusiasm within the robotics community for participating in competitions related to these topics. Based on these findings, we recommend targeting other communities, such as the machine learning community, for future competitions related to these four human-centric topics.
Abstract:Brain-robot interaction (BRI) empowers individuals to control (semi-)automated machines through their brain activity, either passively or actively. In the past decade, BRI systems have achieved remarkable success, predominantly harnessing electroencephalogram (EEG) signals as the central component. This paper offers an up-to-date and exhaustive examination of 87 curated studies published during the last five years (2018-2023), focusing on identifying the research landscape of EEG-based BRI systems. This review aims to consolidate and underscore methodologies, interaction modes, application contexts, system evaluation, existing challenges, and potential avenues for future investigations in this domain. Based on our analysis, we present a BRI system model with three entities: Brain, Robot, and Interaction, depicting the internal relationships of a BRI system. We especially investigate the essence and principles on interaction modes between human brains and robots, a domain that has not yet been identified anywhere. We then discuss these entities with different dimensions encompassed. Within this model, we scrutinize and classify current research, reveal insights, specify challenges, and provide recommendations for future research trajectories in this field. Meanwhile, we envision our findings offer a design space for future human-robot interaction (HRI) research, informing the creation of efficient BRI frameworks.
Abstract:Federated learning (FL) is increasingly being recognized as a key approach to overcoming the data silos that so frequently obstruct the training and deployment of machine-learning models in clinical settings. This work contributes to a growing body of FL research specifically focused on clinical applications along three important directions. First, an extension of the FENDA method (Kim et al., 2016) to the FL setting is proposed. Experiments conducted on the FLamby benchmarks (du Terrail et al., 2022a) and GEMINI datasets (Verma et al., 2017) show that the approach is robust to heterogeneous clinical data and often outperforms existing global and personalized FL techniques. Further, the experimental results represent substantive improvements over the original FLamby benchmarks and expand such benchmarks to include evaluation of personalized FL methods. Finally, we advocate for a comprehensive checkpointing and evaluation framework for FL to better reflect practical settings and provide multiple baselines for comparison.
Abstract:This paper approaches the unsupervised learning problem by gradient descent in the space of probability density functions. Our main result shows that along the gradient flow induced by a distribution-dependent ordinary differential equation (ODE), the unknown data distribution emerges as the long-time limit of this flow of densities. That is, one can uncover the data distribution by simulating the distribution-dependent ODE. Intriguingly, we find that the simulation of the ODE is equivalent to the training of generative adversarial networks (GANs). The GAN framework, by definition a non-cooperative game between a generator and a discriminator, can therefore be viewed alternatively as a cooperative game between a navigator and a calibrator (in collaboration to simulate the ODE). At the theoretic level, this new perspective simplifies the analysis of GANs and gives new insight into their performance. To construct a solution to the distribution-dependent ODE, we first show that the associated nonlinear Fokker-Planck equation has a unique weak solution, using the Crandall-Liggett theorem for differential equations in Banach spaces. From this solution to the Fokker-Planck equation, we construct a unique solution to the ODE, relying on Trevisan's superposition principle. The convergence of the induced gradient flow to the data distribution is obtained by analyzing the Fokker-Planck equation.