Abstract:For crosslingual conversation and trade, Neural Machine Translation (NMT) is pivotal yet faces persistent challenges with monotony and repetition in generated content. Traditional solutions that rely on penalizing text redundancy or token reoccurrence have shown limited efficacy, particularly for lengthy article and e-commerce descriptions with inherent redundancy, even with the advent of Large Language Models (LLMs). This paper investigates the underlying causes of textual repetition through the lens of information entropy, attributing the phenomenon to the elevated uncertainty within the input text. To address this, a novel algorithm named Contrastive Token Learning with Similarity Decay (CTSD) is introduced, which modulates the suppression of tokens dynamically, informed by varying attention weights and inter-token distances. Furthermore, an e-commerce dataset comprised of title texts of online real items is compiled and released susceptible to hallucination translations to benchmark the algorithm. Extensive evaluations demonstrate that CTSD significantly outperforms existing approaches in precision and generalizability. Additional online A/B testing underscores its practical value, showing marked improvements in user engagement and conversion. Notably, this method has been implemented with full traffic on eight multilingual sites of alibaba.com, the largest B2B e-commerce platform in the world.
Abstract:The integration of Artificial Intelligence (AI) in healthcare presents a transformative potential for enhancing operational efficiency and health outcomes. Large Language Models (LLMs), such as ChatGPT, have shown their capabilities in supporting medical decision-making. Embedding LLMs in medical systems is becoming a promising trend in healthcare development. The potential of ChatGPT to address the triage problem in emergency departments has been examined, while few studies have explored its application in outpatient departments. With a focus on streamlining workflows and enhancing efficiency for outpatient triage, this study specifically aims to evaluate the consistency of responses provided by ChatGPT in outpatient guidance, including both within-version response analysis and between-version comparisons. For within-version, the results indicate that the internal response consistency for ChatGPT-4.0 is significantly higher than ChatGPT-3.5 (p=0.03) and both have a moderate consistency (71.2% for 4.0 and 59.6% for 3.5) in their top recommendation. However, the between-version consistency is relatively low (mean consistency score=1.43/3, median=1), indicating few recommendations match between the two versions. Also, only 50% top recommendations match perfectly in the comparisons. Interestingly, ChatGPT-3.5 responses are more likely to be complete than those from ChatGPT-4.0 (p=0.02), suggesting possible differences in information processing and response generation between the two versions. The findings offer insights into AI-assisted outpatient operations, while also facilitating the exploration of potentials and limitations of LLMs in healthcare utilization. Future research may focus on carefully optimizing LLMs and AI integration in healthcare systems based on ergonomic and human factors principles, precisely aligning with the specific needs of effective outpatient triage.
Abstract:Biomarker detection is an indispensable part in the diagnosis and treatment of low-grade glioma (LGG). However, current LGG biomarker detection methods rely on expensive and complex molecular genetic testing, for which professionals are required to analyze the results, and intra-rater variability is often reported. To overcome these challenges, we propose an interpretable deep learning pipeline, a Multi-Biomarker Histomorphology Discoverer (Multi-Beholder) model based on the multiple instance learning (MIL) framework, to predict the status of five biomarkers in LGG using only hematoxylin and eosin-stained whole slide images and slide-level biomarker status labels. Specifically, by incorporating the one-class classification into the MIL framework, accurate instance pseudo-labeling is realized for instance-level supervision, which greatly complements the slide-level labels and improves the biomarker prediction performance. Multi-Beholder demonstrates superior prediction performance and generalizability for five LGG biomarkers (AUROC=0.6469-0.9735) in two cohorts (n=607) with diverse races and scanning protocols. Moreover, the excellent interpretability of Multi-Beholder allows for discovering the quantitative and qualitative correlations between biomarker status and histomorphology characteristics. Our pipeline not only provides a novel approach for biomarker prediction, enhancing the applicability of molecular treatments for LGG patients but also facilitates the discovery of new mechanisms in molecular functionality and LGG progression.
Abstract:As AI-based decision systems proliferate, their successful operationalization requires balancing multiple desiderata: predictive performance, disparity across groups, safeguarding sensitive group attributes (e.g., race), and engineering cost. We present a holistic framework for evaluating and contextualizing fairness interventions with respect to the above desiderata. The two key points of practical consideration are where (pre-, in-, post-processing) and how (in what way the sensitive group data is used) the intervention is introduced. We demonstrate our framework using a thorough benchmarking study on predictive parity; we study close to 400 methodological variations across two major model types (XGBoost vs. Neural Net) and ten datasets. Methodological insights derived from our empirical study inform the practical design of ML workflow with fairness as a central concern. We find predictive parity is difficult to achieve without using group data, and despite requiring group data during model training (but not inference), distributionally robust methods provide significant Pareto improvement. Moreover, a plain XGBoost model often Pareto-dominates neural networks with fairness interventions, highlighting the importance of model inductive bias.