Abstract:A flexible active safety motion (FASM) control approach is proposed for the avoidance of dynamic obstacles and the reference tracking in robot manipulators. The distinctive feature of the proposed method lies in its utilization of control barrier functions (CBF) to design flexible CBF-guided safety criteria (CBFSC) with dynamically optimized decay rates, thereby offering flexibility and active safety for robot manipulators in dynamic environments. First, discrete-time CBFs are employed to formulate the novel flexible CBFSC with dynamic decay rates for robot manipulators. Following that, the model predictive control (MPC) philosophy is applied, integrating flexible CBFSC as safety constraints into the receding-horizon optimization problem. Significantly, the decay rates of the designed CBFSC are incorporated as decision variables in the optimization problem, facilitating the dynamic enhancement of flexibility during the obstacle avoidance process. In particular, a novel cost function that integrates a penalty term is designed to dynamically adjust the safety margins of the CBFSC. Finally, experiments are conducted in various scenarios using a Universal Robots 5 (UR5) manipulator to validate the effectiveness of the proposed approach.
Abstract:The image annotation stage is a critical and often the most time-consuming part required for training and evaluating object detection and semantic segmentation models. Deployment of the existing models in novel environments often requires detecting novel semantic classes not present in the training data. Furthermore, indoor scenes contain significant viewpoint variations, which need to be handled properly by trained perception models. We propose to leverage the recent advancements in state-of-the-art models for bottom-up segmentation (SAM), object detection (Detic), and semantic segmentation (MaskFormer), all trained on large-scale datasets. We aim to develop a cost-effective labeling approach to obtain pseudo-labels for semantic segmentation and object instance detection in indoor environments, with the ultimate goal of facilitating the training of lightweight models for various downstream tasks. We also propose a multi-view labeling fusion stage, which considers the setting where multiple views of the scenes are available and can be used to identify and rectify single-view inconsistencies. We demonstrate the effectiveness of the proposed approach on the Active Vision dataset and the ADE20K dataset. We evaluate the quality of our labeling process by comparing it with human annotations. Also, we demonstrate the effectiveness of the obtained labels in downstream tasks such as object goal navigation and part discovery. In the context of object goal navigation, we depict enhanced performance using this fusion approach compared to a zero-shot baseline that utilizes large monolithic vision-language pre-trained models.
Abstract:In recent years several learning approaches to point goal navigation in previously unseen environments have been proposed. They vary in the representations of the environments, problem decomposition, and experimental evaluation. In this work, we compare the state-of-the-art Deep Reinforcement Learning based approaches with Partially Observable Markov Decision Process (POMDP) formulation of the point goal navigation problem. We adapt the (POMDP) sub-goal framework proposed by [1] and modify the component that estimates frontier properties by using partial semantic maps of indoor scenes built from images' semantic segmentation. In addition to the well-known completeness of the model-based approach, we demonstrate that it is robust and efficient in that it leverages informative, learned properties of the frontiers compared to an optimistic frontier-based planner. We also demonstrate its data efficiency compared to the end-to-end deep reinforcement learning approaches. We compare our results against an optimistic planner, ANS and DD-PPO on Matterport3D dataset using the Habitat Simulator. We show comparable, though slightly worse performance than the SOTA DD-PPO approach, yet with far fewer data.
Abstract:We consider the problem of time-limited robotic exploration in previously unseen environments where exploration is limited by a predefined amount of time. We propose a novel exploration approach using learning-augmented model-based planning. We generate a set of subgoals associated with frontiers on the current map and derive a Bellman Equation for exploration with these subgoals. Visual sensing and advances in semantic mapping of indoor scenes are exploited for training a deep convolutional neural network to estimate properties associated with each frontier: the expected unobserved area beyond the frontier and the expected timesteps (discretized actions) required to explore it. The proposed model-based planner is guaranteed to explore the whole scene if time permits. We thoroughly evaluate our approach on a large-scale pseudo-realistic indoor dataset (Matterport3D) with the Habitat simulator. We compare our approach with classical and more recent RL-based exploration methods, demonstrating its clear advantages in several settings.
Abstract:The ability to endow maps of indoor scenes with semantic information is an integral part of robotic agents which perform different tasks such as target driven navigation, object search or object rearrangement. The state-of-the-art methods use Deep Convolutional Neural Networks (DCNNs) for predicting semantic segmentation of an image as useful representation for these tasks. The accuracy of semantic segmentation depends on the availability and the amount of labeled data from the target environment or the ability to bridge the domain gap between test and training environment. We propose RegConsist, a method for self-supervised pre-training of a semantic segmentation model, exploiting the ability of the agent to move and register multiple views in the novel environment. Given the spatial and temporal consistency cues used for pixel level data association, we use a variant of contrastive learning to train a DCNN model for predicting semantic segmentation from RGB views in the target environment. The proposed method outperforms models pre-trained on ImageNet and achieves competitive performance when using models that are trained for exactly the same task but on a different dataset. We also perform various ablation studies to analyze and demonstrate the efficacy of our proposed method.
Abstract:This study develops a framework for unmanned aerial systems (UASs) to monitor fall hazard prevention systems near unprotected edges and openings in high-rise building projects. A three-step machine-learning-based framework was developed and tested to detect guardrail posts from the images captured by UAS. First, a guardrail detector was trained to localize the candidate locations of posts supporting the guardrail. Since images were used in this process collected from an actual job site, several false detections were identified. Therefore, additional constraints were introduced in the following steps to filter out false detections. Second, the research team applied a horizontal line detector to the image to properly detect floors and remove the detections that were not close to the floors. Finally, since the guardrail posts are installed with approximately normal distribution between each post, the space between them was estimated and used to find the most likely distance between the two posts. The research team used various combinations of the developed approaches to monitor guardrail systems in the captured images from a high-rise building project. Comparing the precision and recall metrics indicated that the cascade classifier achieves better performance with floor detection and guardrail spacing estimation. The research outcomes illustrate that the proposed guardrail recognition system can improve the assessment of guardrails and facilitate the safety engineer's task of identifying fall hazards in high-rise building projects.
Abstract:Recent efforts in deploying Deep Neural Networks for object detection in real world applications, such as autonomous driving, assume that all relevant object classes have been observed during training. Quantifying the performance of these models in settings when the test data is not represented in the training set has mostly focused on pixel-level uncertainty estimation techniques of models trained for semantic segmentation. This paper proposes to exploit additional predictions of semantic segmentation models and quantifying its confidences, followed by classification of object hypotheses as known vs. unknown, out of distribution objects. We use object proposals generated by Region Proposal Network (RPN) and adapt distance aware uncertainty estimation of semantic segmentation using Radial Basis Functions Networks (RBFN) for class agnostic object mask prediction. The augmented object proposals are then used to train a classifier for known vs. unknown objects categories. Experimental results demonstrate that the proposed method achieves parallel performance to state of the art methods for unknown object detection and can also be used effectively for reducing object detectors' false positive rate. Our method is well suited for applications where prediction of non-object background categories obtained by semantic segmentation is reliable.
Abstract:The advances in deep reinforcement learning recently revived interest in data-driven learning based approaches to navigation. In this paper we propose to learn viewpoint invariant and target invariant visual servoing for local mobile robot navigation; given an initial view and the goal view or an image of a target, we train deep convolutional network controller to reach the desired goal. We present a new architecture for this task which rests on the ability of establishing correspondences between the initial and goal view and novel reward structure motivated by the traditional feedback control error. The advantage of the proposed model is that it does not require calibration and depth information and achieves robust visual servoing in a variety of environments and targets without any parameter fine tuning. We present comprehensive evaluation of the approach and comparison with other deep learning architectures as well as classical visual servoing methods in visually realistic simulation environment. The presented model overcomes the brittleness of classical visual servoing based methods and achieves significantly higher generalization capability compared to the previous learning approaches.
Abstract:This work presents a modular architecture for simultaneous mapping and target driven navigation in indoors environments. The semantic and appearance stored in 2.5D map is distilled from RGB images, semantic segmentation and outputs of object detectors by convolutional neural networks. Given this representation, the mapping module learns to localize the agent and register consecutive observations in the map. The navigation task is then formulated as a problem of learning a policy for reaching semantic targets using current observations and the up-to-date map. We demonstrate that the use of semantic information improves localization accuracy and the ability of storing spatial semantic map aids the target driven navigation policy. The two modules are evaluated separately and jointly on Active Vision Dataset and Matterport3D environments, demonstrating improved performance on both localization and navigation tasks.
Abstract:Video Question Answering is a challenging problem in visual information retrieval, which provides the answer to the referenced video content according to the question. However, the existing visual question answering approaches mainly tackle the problem of static image question, which may be ineffectively for video question answering due to the insufficiency of modeling the temporal dynamics of video contents. In this paper, we study the problem of video question answering by modeling its temporal dynamics with frame-level attention mechanism. We propose the attribute-augmented attention network learning framework that enables the joint frame-level attribute detection and unified video representation learning for video question answering. We then incorporate the multi-step reasoning process for our proposed attention network to further improve the performance. We construct a large-scale video question answering dataset. We conduct the experiments on both multiple-choice and open-ended video question answering tasks to show the effectiveness of the proposed method.