Abstract:Media bias significantly shapes public perception by reinforcing stereotypes and exacerbating societal divisions. Prior research has often focused on isolated media bias dimensions such as \textit{political bias} or \textit{racial bias}, neglecting the complex interrelationships among various bias dimensions across different topic domains. Moreover, we observe that models trained on existing media bias benchmarks fail to generalize effectively on recent social media posts, particularly in certain bias identification tasks. This shortfall primarily arises because these benchmarks do not adequately reflect the rapidly evolving nature of social media content, which is characterized by shifting user behaviors and emerging trends. In response to these limitations, our research introduces a novel dataset collected from YouTube and Reddit over the past five years. Our dataset includes automated annotations for YouTube content across a broad spectrum of bias dimensions, such as gender, racial, and political biases, as well as hate speech, among others. It spans diverse domains including politics, sports, healthcare, education, and entertainment, reflecting the complex interplay of biases across different societal sectors. Through comprehensive statistical analysis, we identify significant differences in bias expression patterns and intra-domain bias correlations across these domains. By utilizing our understanding of the correlations among various bias dimensions, we lay the groundwork for creating advanced systems capable of detecting multiple biases simultaneously. Overall, our dataset advances the field of media bias identification, contributing to the development of tools that promote fairer media consumption. The comprehensive awareness of existing media bias fosters more ethical journalism, promotes cultural sensitivity, and supports a more informed and equitable public discourse.
Abstract:Automatic modulation classification (AMC) is a promising technology to realize intelligent wireless communications in the sixth generation (6G) wireless communication networks. Recently, many data-and-knowledge dual-driven AMC schemes have achieved high accuracy. However, most of these schemes focus on generating additional prior knowledge or features of blind signals, which consumes longer computation time and ignores the interpretability of the model learning process. To solve these problems, we propose a novel knowledge graph (KG) driven AMC (KGAMC) scheme by training the networks under the guidance of domain knowledge. A modulation knowledge graph (MKG) with the knowledge of modulation technical characteristics and application scenarios is constructed and a relation-graph convolution network (RGCN) is designed to extract knowledge of the MKG. This knowledge is utilized to facilitate the signal features separation of the data-oriented model by implementing a specialized feature aggregation method. Simulation results demonstrate that KGAMC achieves superior classification performance compared to other benchmark schemes, especially in the low signal-to-noise ratio (SNR) range. Furthermore, the signal features of the high-order modulation are more discriminative, thus reducing the confusion between similar signals.
Abstract:Crohn's disease (CD) is a chronic and relapsing inflammatory condition that affects segments of the gastrointestinal tract. CD activity is determined by histological findings, particularly the density of neutrophils observed on Hematoxylin and Eosin stains (H&E) imaging. However, understanding the broader morphometry and local cell arrangement beyond cell counting and tissue morphology remains challenging. To address this, we characterize six distinct cell types from H&E images and develop a novel approach for the local spatial signature of each cell. Specifically, we create a 10-cell neighborhood matrix, representing neighboring cell arrangements for each individual cell. Utilizing t-SNE for non-linear spatial projection in scatter-plot and Kernel Density Estimation contour-plot formats, our study examines patterns of differences in the cellular environment associated with the odds ratio of spatial patterns between active CD and control groups. This analysis is based on data collected at the two research institutes. The findings reveal heterogeneous nearest-neighbor patterns, signifying distinct tendencies of cell clustering, with a particular focus on the rectum region. These variations underscore the impact of data heterogeneity on cell spatial arrangements in CD patients. Moreover, the spatial distribution disparities between the two research sites highlight the significance of collaborative efforts among healthcare organizations. All research analysis pipeline tools are available at https://github.com/MASILab/cellNN.