Abstract:In real-time speech communication systems, speech signals are often degraded by multiple distortions. Recently, a two-stage Repair-and-Denoising network (RaD-Net) was proposed with superior speech quality improvement in the ICASSP 2024 Speech Signal Improvement (SSI) Challenge. However, failure to use future information and constraint receptive field of convolution layers limit the system's performance. To mitigate these problems, we extend RaD-Net to its upgraded version, RaD-Net 2. Specifically, a causality-based knowledge distillation is introduced in the first stage to use future information in a causal way. We use the non-causal repairing network as the teacher to improve the performance of the causal repairing network. In addition, in the second stage, complex axial self-attention is applied in the denoising network's complex feature encoder/decoder. Experimental results on the ICASSP 2024 SSI Challenge blind test set show that RaD-Net 2 brings 0.10 OVRL DNSMOS improvement compared to RaD-Net.
Abstract:Audio packet loss is an inevitable problem in real-time speech communication. A band-split packet loss concealment network (BS-PLCNet) targeting full-band signals was recently proposed. Although it performs superiorly in the ICASSP 2024 PLC Challenge, BS-PLCNet is a large model with high computational complexity of 8.95G FLOPS. This paper presents its updated version, BS-PLCNet 2, to reduce computational complexity and improve performance further. Specifically, to compensate for the missing future information, in the wide-band module, we design a dual-path encoder structure (with non-causal and causal path) and leverage an intra-model knowledge distillation strategy to distill the future information from the non-causal teacher to the casual student. Moreover, we introduce a lightweight post-processing module after packet loss restoration to recover speech distortions and remove residual noise in the audio signal. With only 40% of original parameters in BS-PLCNet, BS-PLCNet 2 brings 0.18 PLCMOS improvement on the ICASSP 2024 PLC challenge blind set, achieving state-of-the-art performance on this dataset.
Abstract:Recently, neural networks have proven to be effective in performing speech coding task at low bitrates. However, under-utilization of intra-frame correlations and the error of quantizer specifically degrade the reconstructed audio quality. To improve the coding quality, we present an end-to-end neural speech codec, namely CBRC (Convolutional and Bidirectional Recurrent neural Codec). An interleaved structure using 1D-CNN and Intra-BRNN is designed to exploit the intra-frame correlations more efficiently. Furthermore, Group-wise and Beam-search Residual Vector Quantizer (GB-RVQ) is used to reduce the quantization noise. CBRC encodes audio every 20ms with no additional latency, which is suitable for real-time communication. Experimental results demonstrate the superiority of the proposed codec when comparing CBRC at 3kbps with Opus at 12kbps.
Abstract:This paper introduces our repairing and denoising network (RaD-Net) for the ICASSP 2024 Speech Signal Improvement (SSI) Challenge. We extend our previous framework based on a two-stage network and propose an upgraded model. Specifically, we replace the repairing network with COM-Net from TEA-PSE. In addition, multi-resolution discriminators and multi-band discriminators are adopted in the training stage. Finally, we use a three-step training strategy to optimize our model. We submit two models with different sets of parameters to meet the RTF requirement of the two tracks. According to the official results, the proposed systems rank 2nd in track 1 and 3rd in track 2.
Abstract:Packet loss is a common and unavoidable problem in voice over internet phone (VoIP) systems. To deal with the problem, we propose a band-split packet loss concealment network (BS-PLCNet). Specifically, we split the full-band signal into wide-band (0-8kHz) and high-band (8-24kHz). The wide-band signals are processed by a gated convolutional recurrent network (GCRN), while the high-band counterpart is processed by a simple GRU network. To ensure high speech quality and automatic speech recognition (ASR) compatibility, multi-task learning (MTL) framework including fundamental frequency (f0) prediction, linguistic awareness, and multi-discriminators are used. The proposed approach tied for 1st place in the ICASSP 2024 PLC Challenge.
Abstract:Deep learning based techniques have been popularly adopted in acoustic echo cancellation (AEC). Utilization of speaker representation has extended the frontier of AEC, thus attracting many researchers' interest in personalized acoustic echo cancellation (PAEC). Meanwhile, task-decoupling strategies are widely adopted in speech enhancement. To further explore the task-decoupling approach, we propose to use a two-stage task-decoupling post-filter (TDPF) in PAEC. Furthermore, a multi-scale local-global speaker representation is applied to improve speaker extraction in PAEC. Experimental results indicate that the task-decoupling model can yield better performance than a single joint network. The optimal approach is to decouple the echo cancellation from noise and interference speech suppression. Based on the task-decoupling sequence, optimal training strategies for the two-stage model are explored afterwards.
Abstract:With fewer feature dimensions, filter banks are often used in light-weight full-band speech enhancement models. In order to further enhance the coarse speech in the sub-band domain, it is necessary to apply a post-filtering for harmonic retrieval. The signal processing-based comb filters used in RNNoise and PercepNet have limited performance and may cause speech quality degradation due to inaccurate fundamental frequency estimation. To tackle this problem, we propose a learnable comb filter to enhance harmonics. Based on the sub-band model, we design a DNN-based fundamental frequency estimator to estimate the discrete fundamental frequencies and a comb filter for harmonic enhancement, which are trained via an end-to-end pattern. The experiments show the advantages of our proposed method over PecepNet and DeepFilterNet.
Abstract:In ICASSP 2023 speech signal improvement challenge, we developed a dual-stage neural model which improves speech signal quality induced by different distortions in a stage-wise divide-and-conquer fashion. Specifically, in the first stage, the speech improvement network focuses on recovering the missing components of the spectrum, while in the second stage, our model aims to further suppress noise, reverberation, and artifacts introduced by the first-stage model. Achieving 0.446 in the final score and 0.517 in the P.835 score, our system ranks 4th in the non-real-time track.