Abstract:Recently, neural networks have proven to be effective in performing speech coding task at low bitrates. However, under-utilization of intra-frame correlations and the error of quantizer specifically degrade the reconstructed audio quality. To improve the coding quality, we present an end-to-end neural speech codec, namely CBRC (Convolutional and Bidirectional Recurrent neural Codec). An interleaved structure using 1D-CNN and Intra-BRNN is designed to exploit the intra-frame correlations more efficiently. Furthermore, Group-wise and Beam-search Residual Vector Quantizer (GB-RVQ) is used to reduce the quantization noise. CBRC encodes audio every 20ms with no additional latency, which is suitable for real-time communication. Experimental results demonstrate the superiority of the proposed codec when comparing CBRC at 3kbps with Opus at 12kbps.
Abstract:With fewer feature dimensions, filter banks are often used in light-weight full-band speech enhancement models. In order to further enhance the coarse speech in the sub-band domain, it is necessary to apply a post-filtering for harmonic retrieval. The signal processing-based comb filters used in RNNoise and PercepNet have limited performance and may cause speech quality degradation due to inaccurate fundamental frequency estimation. To tackle this problem, we propose a learnable comb filter to enhance harmonics. Based on the sub-band model, we design a DNN-based fundamental frequency estimator to estimate the discrete fundamental frequencies and a comb filter for harmonic enhancement, which are trained via an end-to-end pattern. The experiments show the advantages of our proposed method over PecepNet and DeepFilterNet.