Abstract:Large Language Models (LLMs) are widely used for knowledge-seeking yet suffer from hallucinations. The knowledge boundary (KB) of an LLM limits its factual understanding, beyond which it may begin to hallucinate. Investigating the perception of LLMs' KB is crucial for detecting hallucinations and LLMs' reliable generation. Current studies perceive LLMs' KB on questions with a concrete answer (close-ended questions) while paying limited attention to semi-open-ended questions (SoeQ) that correspond to many potential answers. Some researchers achieve it by judging whether the question is answerable or not. However, this paradigm is unsuitable for SoeQ, which are usually partially answerable, containing both answerable and ambiguous (unanswerable) answers. Ambiguous answers are essential for knowledge-seeking, but they may go beyond the KB of LLMs. In this paper, we perceive the LLMs' KB with SoeQ by discovering more ambiguous answers. First, we apply an LLM-based approach to construct SoeQ and obtain answers from a target LLM. Unfortunately, the output probabilities of mainstream black-box LLMs are inaccessible to sample for low-probability ambiguous answers. Therefore, we apply an open-sourced auxiliary model to explore ambiguous answers for the target LLM. We calculate the nearest semantic representation for existing answers to estimate their probabilities, with which we reduce the generation probability of high-probability answers to achieve a more effective generation. Finally, we compare the results from the RAG-based evaluation and LLM self-evaluation to categorize four types of ambiguous answers that are beyond the KB of the target LLM. Following our method, we construct a dataset to perceive the KB for GPT-4. We find that GPT-4 performs poorly on SoeQ and is often unaware of its KB. Besides, our auxiliary model, LLaMA-2-13B, is effective in discovering more ambiguous answers.
Abstract:Instruction tuning for large language models (LLMs) can drive them to produce results consistent with human goals in specific downstream tasks. However, the process of continual instruction tuning (CIT) for LLMs may bring about the catastrophic forgetting (CF) problem, where previously learned abilities are degraded. Recent methods try to alleviate the CF problem by modifying models or replaying data, which may only remember the surface-level pattern of instructions and get confused on held-out tasks. In this paper, we propose a novel continual instruction tuning method based on Key-part Information Gain (KPIG). Our method computes the information gain on masked parts to dynamically replay data and refine the training objective, which enables LLMs to capture task-aware information relevant to the correct response and alleviate overfitting to general descriptions in instructions. In addition, we propose two metrics, P-score and V-score, to measure the generalization and instruction-following abilities of LLMs. Experiments demonstrate our method achieves superior performance on both seen and held-out tasks.
Abstract:Temporal knowledge graph question answering (TKGQA) poses a significant challenge task, due to the temporal constraints hidden in questions and the answers sought from dynamic structured knowledge. Although large language models (LLMs) have made considerable progress in their reasoning ability over structured data, their application to the TKGQA task is a relatively unexplored area. This paper first proposes a novel generative temporal knowledge graph question answering framework, GenTKGQA, which guides LLMs to answer temporal questions through two phases: Subgraph Retrieval and Answer Generation. First, we exploit LLM's intrinsic knowledge to mine temporal constraints and structural links in the questions without extra training, thus narrowing down the subgraph search space in both temporal and structural dimensions. Next, we design virtual knowledge indicators to fuse the graph neural network signals of the subgraph and the text representations of the LLM in a non-shallow way, which helps the open-source LLM deeply understand the temporal order and structural dependencies among the retrieved facts through instruction tuning. Experimental results demonstrate that our model outperforms state-of-the-art baselines, even achieving 100\% on the metrics for the simple question type.