Abstract:The primary goal of continual learning (CL) task in medical image segmentation field is to solve the "catastrophic forgetting" problem, where the model totally forgets previously learned features when it is extended to new categories (class-level) or tasks (task-level). Due to the privacy protection, the historical data labels are inaccessible. Prevalent continual learning methods primarily focus on generating pseudo-labels for old datasets to force the model to memorize the learned features. However, the incorrect pseudo-labels may corrupt the learned feature and lead to a new problem that the better the model is trained on the old task, the poorer the model performs on the new tasks. To avoid this problem, we propose a network by introducing the data-specific Mixture of Experts (MoE) structure to handle the new tasks or categories, ensuring that the network parameters of previous tasks are unaffected or only minimally impacted. To further overcome the tremendous memory costs caused by introducing additional structures, we propose a Low-Rank strategy which significantly reduces memory cost. We validate our method on both class-level and task-level continual learning challenges. Extensive experiments on multiple datasets show our model outperforms all other methods.
Abstract:Scribble-based weakly-supervised semantic segmentation using sparse scribble supervision is gaining traction as it reduces annotation costs when compared to fully annotated alternatives. Existing methods primarily generate pseudo-labels by diffusing labeled pixels to unlabeled ones with local cues for supervision. However, this diffusion process fails to exploit global semantics and class-specific cues, which are important for semantic segmentation. In this study, we propose a class-driven scribble promotion network, which utilizes both scribble annotations and pseudo-labels informed by image-level classes and global semantics for supervision. Directly adopting pseudo-labels might misguide the segmentation model, thus we design a localization rectification module to correct foreground representations in the feature space. To further combine the advantages of both supervisions, we also introduce a distance entropy loss for uncertainty reduction, which adapts per-pixel confidence weights according to the reliable region determined by the scribble and pseudo-label's boundary. Experiments on the ScribbleSup dataset with different qualities of scribble annotations outperform all the previous methods, demonstrating the superiority and robustness of our method.The code is available at https://github.com/Zxl19990529/Class-driven-Scribble-Promotion-Network.
Abstract:A deep autoencoder (DAE)-based structure for endto-end communication over the two-user Z-interference channel (ZIC) with finite-alphabet inputs is designed in this paper. The proposed structure jointly optimizes the two encoder/decoder pairs and generates interference-aware constellations that dynamically adapt their shape based on interference intensity to minimize the bit error rate (BER). An in-phase/quadrature-phase (I/Q) power allocation layer is introduced in the DAE to guarantee an average power constraint and enable the architecture to generate constellations with nonuniform shapes. This brings further gain compared to standard uniform constellations such as quadrature amplitude modulation. The proposed structure is then extended to work with imperfect channel state information (CSI). The CSI imperfection due to both the estimation and quantization errors are examined. The performance of the DAEZIC is compared with two baseline methods, i.e., standard and rotated constellations. The proposed structure significantly enhances the performance of the ZIC both for the perfect and imperfect CSI. Simulation results show that the improvement is achieved in all interference regimes (weak, moderate, and strong) and consistently increases with the signal-to-noise ratio (SNR). For example, more than an order of magnitude BER reduction is obtained with respect to the most competitive conventional method at weak interference when SNR>15dB and two bits per symbol are transmitted. The improvements reach about two orders of magnitude when quantization error exists, indicating that the DAE-ZIC is more robust to the interference compared to the conventional methods.
Abstract:Contrastive learning, which is a powerful technique for learning image-level representations from unlabeled data, leads a promising direction to dealing with the dilemma between large-scale pre-training and limited labeled data. However, most existing contrastive learning strategies are designed mainly for downstream tasks of natural images, therefore they are sub-optimal and even worse than learning from scratch when directly applied to medical images whose downstream tasks are usually segmentation. In this work, we propose a novel asymmetric contrastive learning framework named JCL for medical image segmentation with self-supervised pre-training. Specifically, (1) A novel asymmetric contrastive learning strategy is proposed to pre-train both encoder and decoder simultaneously in one-stage to provide better initialization for segmentation models. (2) A multi-level contrastive loss is designed to take the correspondence among feature-level, image-level and pixel-level projections, respectively into account to make sure multi-level representations can be learned by the encoder and decoder during pre-training. (3) Experiments on multiple medical image datasets indicate our JCL framework outperforms existing SOTA contrastive learning strategies.
Abstract:Keypoint-based representation has proven advantageous in various visual and robotic tasks. However, the existing 2D and 3D methods for detecting keypoints mainly rely on geometric consistency to achieve spatial alignment, neglecting temporal consistency. To address this issue, the Transporter method was introduced for 2D data, which reconstructs the target frame from the source frame to incorporate both spatial and temporal information. However, the direct application of the Transporter to 3D point clouds is infeasible due to their structural differences from 2D images. Thus, we propose the first 3D version of the Transporter, which leverages hybrid 3D representation, cross attention, and implicit reconstruction. We apply this new learning system on 3D articulated objects and nonrigid animals (humans and rodents) and show that learned keypoints are spatio-temporally consistent. Additionally, we propose a closed-loop control strategy that utilizes the learned keypoints for 3D object manipulation and demonstrate its superior performance. Codes are available at https://github.com/zhongcl-thu/3D-Implicit-Transporter.
Abstract:End-to-end weakly supervised semantic segmentation aims at optimizing a segmentation model in a single-stage training process based on only image annotations. Existing methods adopt an online-trained classification branch to provide pseudo annotations for supervising the segmentation branch. However, this strategy makes the classification branch dominate the whole concurrent training process, hindering these two branches from assisting each other. In our work, we treat these two branches equally by viewing them as diverse ways to generate the segmentation map, and add interactions on both their supervision and operation to achieve mutual promotion. For this purpose, a bidirectional supervision mechanism is elaborated to force the consistency between the outputs of these two branches. Thus, the segmentation branch can also give feedback to the classification branch to enhance the quality of localization seeds. Moreover, our method also designs interaction operations between these two branches to exchange their knowledge to assist each other. Experiments indicate our work outperforms existing end-to-end weakly supervised segmentation methods.
Abstract:A deep autoencoder (DAE)-based end-to-end communication over the two-user Z-interference channel (ZIC) with finite-alphabet inputs is designed in this paper. The design is for imperfect channel state information (CSI) where both estimation and quantization errors exist. The proposed structure jointly optimizes the encoders and decoders to generate interferenceaware constellations that adapt their shape to the interference intensity in order to minimize the bit error rate. A normalization layer is designed to guarantee an average power constraint in the DAE while allowing the architecture to generate constellations with nonuniform shapes. This brings further shaping gain compared to standard uniform constellations such as quadrature amplitude modulation. The performance of the DAE-ZIC is compared with two conventional methods, i.e., standard and rotated constellations. The proposed structure significantly enhances the performance of the ZIC. Simulation results confirm bit error rate reduction in all interference regimes (weak, moderate, and strong). At a signal-to-noise ratio of 20dB, the improvements reach about two orders of magnitude when only quantization error exists, indicating that the DAE-ZIC is highly robust to the interference compared to the conventional methods.
Abstract:We demonstrate a fully-integrated multipurpose microwave frequency identification system on silicon-on-insulator platform. Thanks to its multipurpose features, the chip is able to identify different types of microwave signals, including single-frequency, multiple-frequency, chirped and frequency-hopping microwave signals, as well as discriminate instantaneous frequency variation among the frequency-modulated signals. This demonstration exhibits fully integrated solution and fully functional microwave frequency identification, which can meet the requirements in reduction of size, weight and power for future advanced microwave photonic processor.
Abstract:Using a deep autoencoder (DAE) for end-to-end communication in multiple-input multiple-output (MIMO) systems is a novel concept with significant potential. DAE-aided MIMO has been shown to outperform singular-value decomposition (SVD)-based precoded MIMO in terms of bit error rate (BER). This paper proposes embedding left- and right-singular vectors of the channel matrix into DAE encoder and decoder to further improve the performance of MIMO spatial multiplexing. SVD-embedded DAE largely outperforms theoretic linear precoding in terms of BER. This is remarkable since it demonstrates that the proposed DAEs have significant potential to exceed the limits of current system design by treating the communication system as a single, end-to-end optimization block. Based on the simulation results, at SNR=10dB, the proposed SVD-embedded design can achieve BER nearly $10^{-5}$ and reduce the BER at least 10 times compared with existing DAE without SVD, and up to 18 times improvement compared with theoretical linear precoding. We attribute this to the fact that the proposed DAE can match the input and output as an adaptive modulation structure with finite alphabet input. We also observe that adding residual connections to the DAE further improves the performance.
Abstract:This paper introduces a unified deep neural network (DNN)-based precoder for two-user multiple-input multiple-output (MIMO) networks with five objectives: data transmission, energy harvesting, simultaneous wireless information and power transfer, physical layer (PHY) security, and multicasting. First, a rotation-based precoding is developed to solve the above problems independently. Rotation-based precoding is new precoding and power allocation that beats existing solutions in PHY security and multicasting and is reliable in different antenna settings. Next, a DNN-based precoder is designed to unify the solution for all objectives. The proposed DNN concurrently learns the solutions given by conventional methods, i.e., analytical or rotation-based solutions. A binary vector is designed as an input feature to distinguish the objectives. Numerical results demonstrate that, compared to the conventional solutions, the proposed DNN-based precoder reduces on-the-fly computational complexity more than an order of magnitude while reaching near-optimal performance (99.45\% of the averaged optimal solutions). The new precoder is also more robust to the variations of the numbers of antennas at the receivers.