Abstract:This paper proposes a novel approach for designing Single-Parameterized Kolmogorov-Arnold Networks (SKAN) by utilizing a Single-Parameterized Function (SFunc) constructed from trigonometric functions. Three new SKAN variants are developed: LSin-SKAN, LCos-SKAN, and LArctan-SKAN. Experimental validation on the MNIST dataset demonstrates that LArctan-SKAN excels in both accuracy and computational efficiency. Specifically, LArctan-SKAN significantly improves test set accuracy over existing models, outperforming all pure KAN variants compared, including FourierKAN, LSS-SKAN, and Spl-KAN. It also surpasses mixed MLP-based models such as MLP+rKAN and MLP+fKAN in accuracy. Furthermore, LArctan-SKAN exhibits remarkable computational efficiency, with a training speed increase of 535.01% and 49.55% compared to MLP+rKAN and MLP+fKAN, respectively. These results confirm the effectiveness and potential of SKANs constructed with trigonometric functions. The experiment code is available at https://github.com/chikkkit/LArctan-SKAN .
Abstract:The recently proposed Kolmogorov-Arnold Networks (KAN) networks have attracted increasing attention due to their advantage of high visualizability compared to MLP. In this paper, based on a series of small-scale experiments, we proposed the Efficient KAN Expansion Principle (EKE Principle): allocating parameters to expand network scale, rather than employing more complex basis functions, leads to more efficient performance improvements in KANs. Based on this principle, we proposed a superior KAN termed SKAN, where the basis function utilizes only a single learnable parameter. We then evaluated various single-parameterized functions for constructing SKANs, with LShifted Softplus-based SKANs (LSS-SKANs) demonstrating superior accuracy. Subsequently, extensive experiments were performed, comparing LSS-SKAN with other KAN variants on the MNIST dataset. In the final accuracy tests, LSS-SKAN exhibited superior performance on the MNIST dataset compared to all tested pure KAN variants. Regarding execution speed, LSS-SKAN outperformed all compared popular KAN variants. Our experimental codes are available at https://github.com/chikkkit/LSS-SKAN and SKAN's Python library (for quick construction of SKAN in python) codes are available at https://github.com/chikkkit/SKAN .
Abstract:Within the domain of medical analysis, extensive research has explored the potential of mutual learning between Masked Autoencoders(MAEs) and multimodal data. However, the impact of MAEs on intermodality remains a key challenge. We introduce MedFLIP, a Fast Language-Image Pre-training method for Medical analysis. We explore MAEs for zero-shot learning with crossed domains, which enhances the model ability to learn from limited data, a common scenario in medical diagnostics. We verify that masking an image does not affect intermodal learning. Furthermore, we propose the SVD loss to enhance the representation learning for characteristics of medical images, aiming to improve classification accuracy by leveraging the structural intricacies of such data. Lastly, we validate using language will improve the zero-shot performance for the medical image analysis. MedFLIP scaling of the masking process marks an advancement in the field, offering a pathway to rapid and precise medical image analysis without the traditional computational bottlenecks. Through experiments and validation, MedFLIP demonstrates efficient performance improvements, setting an explored standard for future research and application in medical diagnostics.
Abstract:Evolutionary algorithms, such as Differential Evolution, excel in solving real-parameter optimization challenges. However, the effectiveness of a single algorithm varies across different problem instances, necessitating considerable efforts in algorithm selection or configuration. This paper aims to address the limitation by leveraging the complementary strengths of a group of algorithms and dynamically scheduling them throughout the optimization progress for specific problems. We propose a deep reinforcement learning-based dynamic algorithm selection framework to accomplish this task. Our approach models the dynamic algorithm selection a Markov Decision Process, training an agent in a policy gradient manner to select the most suitable algorithm according to the features observed during the optimization process. To empower the agent with the necessary information, our framework incorporates a thoughtful design of landscape and algorithmic features. Meanwhile, we employ a sophisticated deep neural network model to infer the optimal action, ensuring informed algorithm selections. Additionally, an algorithm context restoration mechanism is embedded to facilitate smooth switching among different algorithms. These mechanisms together enable our framework to seamlessly select and switch algorithms in a dynamic online fashion. Notably, the proposed framework is simple and generic, offering potential improvements across a broad spectrum of evolutionary algorithms. As a proof-of-principle study, we apply this framework to a group of Differential Evolution algorithms. The experimental results showcase the remarkable effectiveness of the proposed framework, not only enhancing the overall optimization performance but also demonstrating favorable generalization ability across different problem classes.