Abstract:This paper reviews the AIS 2024 Video Quality Assessment (VQA) Challenge, focused on User-Generated Content (UGC). The aim of this challenge is to gather deep learning-based methods capable of estimating the perceptual quality of UGC videos. The user-generated videos from the YouTube UGC Dataset include diverse content (sports, games, lyrics, anime, etc.), quality and resolutions. The proposed methods must process 30 FHD frames under 1 second. In the challenge, a total of 102 participants registered, and 15 submitted code and models. The performance of the top-5 submissions is reviewed and provided here as a survey of diverse deep models for efficient video quality assessment of user-generated content.
Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:Automatic human matting is highly desired for many real applications. We investigate recent human matting methods and show that common bad cases happen when semantic human segmentation fails. This indicates that semantic understanding is crucial for robust human matting. From this, we develop a fast yet accurate human matting framework, named Semantic Guided Human Matting (SGHM). It builds on a semantic human segmentation network and introduces a light-weight matting module with only marginal computational cost. Unlike previous works, our framework is data efficient, which requires a small amount of matting ground-truth to learn to estimate high quality object mattes. Our experiments show that trained with merely 200 matting images, our method can generalize well to real-world datasets, and outperform recent methods on multiple benchmarks, while remaining efficient. Considering the unbearable labeling cost of matting data and widely available segmentation data, our method becomes a practical and effective solution for the task of human matting. Source code is available at https://github.com/cxgincsu/SemanticGuidedHumanMatting.