Abstract:Computer-aided cancer survival risk prediction plays an important role in the timely treatment of patients. This is a challenging weakly supervised ordinal regression task associated with multiple clinical factors involved such as pathological images, genomic data and etc. In this paper, we propose a new training method, multimodal object-level contrast learning, for cancer survival risk prediction. First, we construct contrast learning pairs based on the survival risk relationship among the samples in the training sample set. Then we introduce the object-level contrast learning method to train the survival risk predictor. We further extend it to the multimodal scenario by applying cross-modal constrast. Considering the heterogeneity of pathological images and genomics data, we construct a multimodal survival risk predictor employing attention-based and self-normalizing based nerural network respectively. Finally, the survival risk predictor trained by our proposed method outperforms state-of-the-art methods on two public multimodal cancer datasets for survival risk prediction.
Abstract:Recent advances have been witnessed in audio-language joint learning, such as CLAP, that shows much success in multi-modal understanding tasks. These models usually aggregate uni-modal local representations, namely frame or word features, into global ones, on which the contrastive loss is employed to reach coarse-grained cross-modal alignment. However, frame-level correspondence with texts may be ignored, making it ill-posed on explainability and fine-grained challenges which may also undermine performances on coarse-grained tasks. In this work, we aim to improve both coarse- and fine-grained audio-language alignment in large-scale contrastive pre-training. To unify the granularity and latent distribution of two modalities, a shared codebook is adopted to represent multi-modal global features with common bases, and each codeword is regularized to encode modality-shared semantics, bridging the gap between frame and word features. Based on it, a locality-aware block is involved to purify local patterns, and a hard-negative guided loss is devised to boost alignment. Experiments on eleven zero-shot coarse- and fine-grained tasks suggest that our model not only surpasses the baseline CLAP significantly but also yields superior or competitive results compared to current SOTA works.
Abstract:Cancer survival prediction is a challenging task that involves analyzing of the tumor microenvironment within Whole Slide Image (WSI). Previous methods cannot effectively capture the intricate interaction features among instances within the local area of WSI. Moreover, existing methods for cancer survival prediction based on WSI often fail to provide better clinically meaningful predictions. To overcome these challenges, we propose a Sparse Context-aware Multiple Instance Learning (SCMIL) framework for predicting cancer survival probability distributions. SCMIL innovatively segments patches into various clusters based on their morphological features and spatial location information, subsequently leveraging sparse self-attention to discern the relationships between these patches with a context-aware perspective. Considering many patches are irrelevant to the task, we introduce a learnable patch filtering module called SoftFilter, which ensures that only interactions between task-relevant patches are considered. To enhance the clinical relevance of our prediction, we propose a register-based mixture density network to forecast the survival probability distribution for individual patients. We evaluate SCMIL on two public WSI datasets from the The Cancer Genome Atlas (TCGA) specifically focusing on lung adenocarcinom (LUAD) and kidney renal clear cell carcinoma (KIRC). Our experimental results indicate that SCMIL outperforms current state-of-the-art methods for survival prediction, offering more clinically meaningful and interpretable outcomes. Our code is accessible at https://github.com/yang-ze-kang/SCMIL.
Abstract:Weakly-supervised learning has emerged as a promising approach to leverage limited labeled data in various domains by bridging the gap between fully supervised methods and unsupervised techniques. Acquisition of strong annotations for detecting sound events is prohibitively expensive, making weakly supervised learning a more cost-effective and broadly applicable alternative. In order to enhance the recognition rate of the learning of detection of weakly-supervised sound events, we introduce a Frame Pairwise Distance (FPD) loss branch, complemented with a minimal amount of synthesized data. The corresponding sampling and label processing strategies are also proposed. Two distinct distance metrics are employed to evaluate the proposed approach. Finally, the method is validated on the standard DCASE dataset. The obtained experimental results corroborated the efficacy of this approach.
Abstract:Learning meaningful frame-wise features on a partially labeled dataset is crucial to semi-supervised sound event detection. Prior works either maintain consistency on frame-level predictions or seek feature-level similarity among neighboring frames, which cannot exploit the potential of unlabeled data. In this work, we design a Local and Global Consistency (LGC) regularization scheme to enhance the model on both label- and feature-level. The audio CutMix is introduced to change the contextual information of clips. Then, the local consistency is adopted to encourage the model to leverage local features for frame-level predictions, and the global consistency is applied to force features to align with global prototypes through a specially designed contrastive loss. Experiments on the DESED dataset indicate the superiority of LGC, surpassing its respective competitors largely with the same settings as the baseline system. Besides, combining LGC with existing methods can obtain further improvements. The code will be released soon.
Abstract:Contrastive Language-Audio Pretraining (CLAP) is pre-trained to associate audio features with human language, making it a natural zero-shot classifier to recognize unseen sound categories. To adapt CLAP to downstream tasks, prior works inevitably require labeled domain audios, which limits their scalability under data scarcity and deprives them of the capability to detect novel classes as the original CLAP. In this work, by leveraging the modality alignment in CLAP, we propose an efficient audio-free prompt tuning scheme aimed at optimizing a few prompt tokens from texts instead of audios, which regularizes the model space to avoid overfitting the seen classes as well. Based on this, a multi-grained prompt design is further explored to fuse global and local information. Experiments on several tasks demonstrate that our approach can boost the CLAP and outperform other training methods on model performance and training efficiency. While conducting zero-shot inference on unseen categories, it still shows better transferability than the vanilla CLAP. Moreover, our method is flexible enough even if only knowing the downstream class names. The code will be released soon.
Abstract:Text-based audio generation models have limitations as they cannot encompass all the information in audio, leading to restricted controllability when relying solely on text. To address this issue, we propose a novel model that enhances the controllability of existing pre-trained text-to-audio models by incorporating additional conditions including content (timestamp) and style (pitch contour and energy contour) as supplements to the text. This approach achieves fine-grained control over the temporal order, pitch, and energy of generated audio. To preserve the diversity of generation, we employ a trainable control condition encoder that is enhanced by a large language model and a trainable Fusion-Net to encode and fuse the additional conditions while keeping the weights of the pre-trained text-to-audio model frozen. Due to the lack of suitable datasets and evaluation metrics, we consolidate existing datasets into a new dataset comprising the audio and corresponding conditions and use a series of evaluation metrics to evaluate the controllability performance. Experimental results demonstrate that our model successfully achieves fine-grained control to accomplish controllable audio generation. Audio samples and our dataset are publicly available at https://conditionaudiogen.github.io/conditionaudiogen/
Abstract:Recently, the ability of language models (LMs) has attracted increasing attention in visual cross-modality. In this paper, we further explore the generation capacity of LMs for sound event detection (SED), beyond the visual domain. Specifically, we propose an elegant method that aligns audio features and text features to accomplish sound event classification and temporal location. The framework consists of an acoustic encoder, a contrastive module that align the corresponding representations of the text and audio, and a decoupled language decoder that generates temporal and event sequences from the audio characteristic. Compared with conventional works that require complicated processing and barely utilize limited audio features, our model is more concise and comprehensive since language model directly leverage its semantic capabilities to generate the sequences. We investigate different decoupling modules to demonstrate the effectiveness for timestamps capture and event classification. Evaluation results show that the proposed method achieves accurate sequences of sound event detection.
Abstract:The significance of multi-scale features has been gradually recognized by the edge detection community. However, the fusion of multi-scale features increases the complexity of the model, which is not friendly to practical application. In this work, we propose a Compact Twice Fusion Network (CTFN) to fully integrate multi-scale features while maintaining the compactness of the model. CTFN includes two lightweight multi-scale feature fusion modules: a Semantic Enhancement Module (SEM) that can utilize the semantic information contained in coarse-scale features to guide the learning of fine-scale features, and a Pseudo Pixel-level Weighting (PPW) module that aggregate the complementary merits of multi-scale features by assigning weights to all features. Notwithstanding all this, the interference of texture noise makes the correct classification of some pixels still a challenge. For these hard samples, we propose a novel loss function, coined Dynamic Focal Loss, which reshapes the standard cross-entropy loss and dynamically adjusts the weights to correct the distribution of hard samples. We evaluate our method on three datasets, i.e., BSDS500, NYUDv2, and BIPEDv2. Compared with state-of-the-art methods, CTFN achieves competitive accuracy with less parameters and computational cost. Apart from the backbone, CTFN requires only 0.1M additional parameters, which reduces its computation cost to just 60% of other state-of-the-art methods. The codes are available at https://github.com/Li-yachuan/CTFN-pytorch-master.
Abstract:In this paper, we describe in detail our system for DCASE 2022 Task4. The system combines two considerably different models: an end-to-end Sound Event Detection Transformer (SEDT) and a frame-wise model, Metric Learning and Focal Loss CNN (MLFL-CNN). The former is an event-wise model which learns event-level representations and predicts sound event categories and boundaries directly, while the latter is based on the widely adopted frame-classification scheme, under which each frame is classified into event categories and event boundaries are obtained by post-processing such as thresholding and smoothing. For SEDT, self-supervised pre-training using unlabeled data is applied, and semi-supervised learning is adopted by using an online teacher, which is updated from the student model using the Exponential Moving Average (EMA) strategy and generates reliable pseudo labels for weakly-labeled and unlabeled data. For the frame-wise model, the ICT-TOSHIBA system of DCASE 2021 Task 4 is used. Experimental results show that the hybrid system considerably outperforms either individual model and achieves psds1 of 0.420 and psds2 of 0.783 on the validation set without external data. The code is available at https://github.com/965694547/Hybrid-system-of-frame-wise-model-and-SEDT.