Abstract:This paper describes the technical and conceptual development of the LuminLab platform, an online tool that integrates a purpose-fit human-centric AI chatbot and predictive energy model into a streamlined front-end that can rapidly produce and discuss building retrofit plans in natural language. The platform provides users with the ability to engage with a range of possible retrofit pathways tailored to their individual budget and building needs on-demand. Given the complicated and costly nature of building retrofit projects, which rely on a variety of stakeholder groups with differing goals and incentives, we feel that AI-powered tools such as this have the potential to pragmatically de-silo knowledge, improve communication, and empower individual homeowners to undertake incremental retrofit projects that might not happen otherwise.
Abstract:Building Energy Rating (BER) stands as a pivotal metric, enabling building owners, policymakers, and urban planners to understand the energy-saving potential through improving building energy efficiency. As such, enhancing buildings' BER levels is expected to directly contribute to the reduction of carbon emissions and promote climate improvement. Nonetheless, the BER assessment process is vulnerable to missing and inaccurate measurements. In this study, we introduce \texttt{CLEAR}, a data-driven approach designed to scrutinize the inconsistencies in BER assessments through self-supervised contrastive learning. We validated the effectiveness of \texttt{CLEAR} using a dataset representing Irish building stocks. Our experiments uncovered evidence of inconsistent BER assessments, highlighting measurement data corruption within this real-world dataset.
Abstract:The significance of multi-scale features has been gradually recognized by the edge detection community. However, the fusion of multi-scale features increases the complexity of the model, which is not friendly to practical application. In this work, we propose a Compact Twice Fusion Network (CTFN) to fully integrate multi-scale features while maintaining the compactness of the model. CTFN includes two lightweight multi-scale feature fusion modules: a Semantic Enhancement Module (SEM) that can utilize the semantic information contained in coarse-scale features to guide the learning of fine-scale features, and a Pseudo Pixel-level Weighting (PPW) module that aggregate the complementary merits of multi-scale features by assigning weights to all features. Notwithstanding all this, the interference of texture noise makes the correct classification of some pixels still a challenge. For these hard samples, we propose a novel loss function, coined Dynamic Focal Loss, which reshapes the standard cross-entropy loss and dynamically adjusts the weights to correct the distribution of hard samples. We evaluate our method on three datasets, i.e., BSDS500, NYUDv2, and BIPEDv2. Compared with state-of-the-art methods, CTFN achieves competitive accuracy with less parameters and computational cost. Apart from the backbone, CTFN requires only 0.1M additional parameters, which reduces its computation cost to just 60% of other state-of-the-art methods. The codes are available at https://github.com/Li-yachuan/CTFN-pytorch-master.
Abstract:Visual relation extraction (VRE) aims to extract relations between entities from visuallyrich documents. Existing methods usually predict relations for each entity pair independently based on entity features but ignore the global structure information, i.e., dependencies between entity pairs. The absence of global structure information may make the model struggle to learn long-range relations and easily predict conflicted results. To alleviate such limitations, we propose a GlObal Structure knowledgeguided relation Extraction (GOSE) framework, which captures dependencies between entity pairs in an iterative manner. Given a scanned image of the document, GOSE firstly generates preliminary relation predictions on entity pairs. Secondly, it mines global structure knowledge based on prediction results of the previous iteration and further incorporates global structure knowledge into entity representations. This "generate-capture-incorporate" schema is performed multiple times so that entity representations and global structure knowledge can mutually reinforce each other. Extensive experiments show that GOSE not only outperforms previous methods on the standard fine-tuning setting but also shows promising superiority in cross-lingual learning; even yields stronger data-efficient performance in the low-resource setting.