Abstract:Building Energy Rating (BER) stands as a pivotal metric, enabling building owners, policymakers, and urban planners to understand the energy-saving potential through improving building energy efficiency. As such, enhancing buildings' BER levels is expected to directly contribute to the reduction of carbon emissions and promote climate improvement. Nonetheless, the BER assessment process is vulnerable to missing and inaccurate measurements. In this study, we introduce \texttt{CLEAR}, a data-driven approach designed to scrutinize the inconsistencies in BER assessments through self-supervised contrastive learning. We validated the effectiveness of \texttt{CLEAR} using a dataset representing Irish building stocks. Our experiments uncovered evidence of inconsistent BER assessments, highlighting measurement data corruption within this real-world dataset.
Abstract:This paper describes the technical and conceptual development of the LuminLab platform, an online tool that integrates a purpose-fit human-centric AI chatbot and predictive energy model into a streamlined front-end that can rapidly produce and discuss building retrofit plans in natural language. The platform provides users with the ability to engage with a range of possible retrofit pathways tailored to their individual budget and building needs on-demand. Given the complicated and costly nature of building retrofit projects, which rely on a variety of stakeholder groups with differing goals and incentives, we feel that AI-powered tools such as this have the potential to pragmatically de-silo knowledge, improve communication, and empower individual homeowners to undertake incremental retrofit projects that might not happen otherwise.