Abstract:Text-based audio generation models have limitations as they cannot encompass all the information in audio, leading to restricted controllability when relying solely on text. To address this issue, we propose a novel model that enhances the controllability of existing pre-trained text-to-audio models by incorporating additional conditions including content (timestamp) and style (pitch contour and energy contour) as supplements to the text. This approach achieves fine-grained control over the temporal order, pitch, and energy of generated audio. To preserve the diversity of generation, we employ a trainable control condition encoder that is enhanced by a large language model and a trainable Fusion-Net to encode and fuse the additional conditions while keeping the weights of the pre-trained text-to-audio model frozen. Due to the lack of suitable datasets and evaluation metrics, we consolidate existing datasets into a new dataset comprising the audio and corresponding conditions and use a series of evaluation metrics to evaluate the controllability performance. Experimental results demonstrate that our model successfully achieves fine-grained control to accomplish controllable audio generation. Audio samples and our dataset are publicly available at https://conditionaudiogen.github.io/conditionaudiogen/
Abstract:Recently, the ability of language models (LMs) has attracted increasing attention in visual cross-modality. In this paper, we further explore the generation capacity of LMs for sound event detection (SED), beyond the visual domain. Specifically, we propose an elegant method that aligns audio features and text features to accomplish sound event classification and temporal location. The framework consists of an acoustic encoder, a contrastive module that align the corresponding representations of the text and audio, and a decoupled language decoder that generates temporal and event sequences from the audio characteristic. Compared with conventional works that require complicated processing and barely utilize limited audio features, our model is more concise and comprehensive since language model directly leverage its semantic capabilities to generate the sequences. We investigate different decoupling modules to demonstrate the effectiveness for timestamps capture and event classification. Evaluation results show that the proposed method achieves accurate sequences of sound event detection.