Abstract:The proliferation of misinformation on social media platforms has highlighted the need to understand how individual personality traits influence susceptibility to and propagation of misinformation. This study employs an innovative agent-based modeling approach to investigate the relationship between personality traits and misinformation dynamics. Using six AI agents embodying different dimensions of the Big Five personality traits (Extraversion, Agreeableness, and Neuroticism), we simulated interactions across six diverse misinformation topics. The experiment, implemented through the AgentScope framework using the GLM-4-Flash model, generated 90 unique interactions, revealing complex patterns in how personality combinations affect persuasion and resistance to misinformation. Our findings demonstrate that analytical and critical personality traits enhance effectiveness in evidence-based discussions, while non-aggressive persuasion strategies show unexpected success in misinformation correction. Notably, agents with critical traits achieved a 59.4% success rate in HIV-related misinformation discussions, while those employing non-aggressive approaches maintained consistent persuasion rates above 40% across different personality combinations. The study also revealed a non-transitive pattern in persuasion effectiveness, challenging conventional assumptions about personality-based influence. These results provide crucial insights for developing personality-aware interventions in digital environments and suggest that effective misinformation countermeasures should prioritize emotional connection and trust-building over confrontational approaches. The findings contribute to both theoretical understanding of personality-misinformation dynamics and practical strategies for combating misinformation in social media contexts.
Abstract:Large Language Models (LLMs) demonstrate remarkable capabilities in text generation, yet their emotional consistency and semantic coherence in social media contexts remain insufficiently understood. This study investigates how LLMs handle emotional content and maintain semantic relationships through continuation and response tasks using two open-source models: Gemma and Llama. By analyzing climate change discussions from Twitter and Reddit, we examine emotional transitions, intensity patterns, and semantic similarity between human-authored and LLM-generated content. Our findings reveal that while both models maintain high semantic coherence, they exhibit distinct emotional patterns: Gemma shows a tendency toward negative emotion amplification, particularly anger, while maintaining certain positive emotions like optimism. Llama demonstrates superior emotional preservation across a broader spectrum of affects. Both models systematically generate responses with attenuated emotional intensity compared to human-authored content and show a bias toward positive emotions in response tasks. Additionally, both models maintain strong semantic similarity with original texts, though performance varies between continuation and response tasks. These findings provide insights into LLMs' emotional and semantic processing capabilities, with implications for their deployment in social media contexts and human-AI interaction design.
Abstract:Here's a condensed 1920-character version: The rise of misinformation and fake news in online political discourse poses significant challenges to democratic processes and public engagement. While debunking efforts aim to counteract misinformation and foster fact-based dialogue, these discussions often involve language toxicity and emotional polarization. We examined over 86 million debunking tweets and more than 4 million Reddit debunking comments to investigate the relationship between language toxicity, pessimism, and social polarization in debunking efforts. Focusing on discussions of the 2016 and 2020 U.S. presidential elections and the QAnon conspiracy theory, our analysis reveals three key findings: (1) peripheral participants (1-degree users) play a disproportionate role in shaping toxic discourse, driven by lower community accountability and emotional expression; (2) platform mechanisms significantly influence polarization, with Twitter amplifying partisan differences and Reddit fostering higher overall toxicity due to its structured, community-driven interactions; and (3) a negative correlation exists between language toxicity and pessimism, with increased interaction reducing toxicity, especially on Reddit. We show that platform architecture affects informational complexity of user interactions, with Twitter promoting concentrated, uniform discourse and Reddit encouraging diverse, complex communication. Our findings highlight the importance of user engagement patterns, platform dynamics, and emotional expressions in shaping polarization in debunking discourse. This study offers insights for policymakers and platform designers to mitigate harmful effects and promote healthier online discussions, with implications for understanding misinformation, hate speech, and political polarization in digital environments.
Abstract:Understanding the dynamics of language toxicity on social media is important for us to investigate the propagation of misinformation and the development of echo chambers for political scenarios such as U.S. presidential elections. Recent research has used large-scale data to investigate the dynamics across social media platforms. However, research on the toxicity dynamics is not enough. This study aims to provide a first exploration of the potential language toxicity flow among Left, Right and Center users. Specifically, we aim to examine whether Left users were easier to be attacked by language toxicity. In this study, more than 500M Twitter posts were examined. It was discovered that Left users received much more toxic replies than Right and Center users.
Abstract:In real-world applications, users express different behaviors when they interact with different items, including implicit click/like interactions, and explicit comments/reviews interactions. Nevertheless, almost all recommender works are focused on how to describe user preferences by the implicit click/like interactions, to find the synergy of people. For the content-based explicit comments/reviews interactions, some works attempt to utilize them to mine the semantic knowledge to enhance recommender models. However, they still neglect the following two points: (1) The content semantic is a universal world knowledge; how do we extract the multi-aspect semantic information to empower different domains? (2) The user/item ID feature is a fundamental element for recommender models; how do we align the ID and content semantic feature space? In this paper, we propose a `plugin' semantic knowledge transferring method \textbf{LoID}, which includes two major components: (1) LoRA-based large language model pretraining to extract multi-aspect semantic information; (2) ID-based contrastive objective to align their feature spaces. We conduct extensive experiments with SOTA baselines on real-world datasets, the detailed results demonstrating significant improvements of our method LoID.
Abstract:Many real-world graphs (networks) are heterogeneous with different types of nodes and edges. Heterogeneous graph embedding, aiming at learning the low-dimensional node representations of a heterogeneous graph, is vital for various downstream applications. Many meta-path based embedding methods have been proposed to learn the semantic information of heterogeneous graphs in recent years. However, most of the existing techniques overlook the graph structure information when learning the heterogeneous graph embeddings. This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations. In detail, we first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path. Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path. Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths. We conducted experiments on node classification and clustering tasks and achieved state-of-the-art results on the benchmark datasets, which shows the effectiveness of our proposed method.
Abstract:Learning the embeddings of knowledge graphs is vital in artificial intelligence, and can benefit various downstream applications, such as recommendation and question answering. In recent years, many research efforts have been proposed for knowledge graph embedding. However, most previous knowledge graph embedding methods ignore the semantic similarity between the related entities and entity-relation couples in different triples since they separately optimize each triple with the scoring function. To address this problem, we propose a simple yet efficient contrastive learning framework for knowledge graph embeddings, which can shorten the semantic distance of the related entities and entity-relation couples in different triples and thus improve the expressiveness of knowledge graph embeddings. We evaluate our proposed method on three standard knowledge graph benchmarks. It is noteworthy that our method can yield some new state-of-the-art results, achieving 51.2% MRR, 46.8% Hits@1 on the WN18RR dataset, and 59.1% MRR, 51.8% Hits@1 on the YAGO3-10 dataset.
Abstract:Stock trend forecasting, which forecasts stock prices' future trends, plays an essential role in investment. The stocks in a market can share information so that their stock prices are highly correlated. Several methods were recently proposed to mine the shared information through stock concepts (e.g., technology, Internet Retail) extracted from the Web to improve the forecasting results. However, previous work assumes the connections between stocks and concepts are stationary, and neglects the dynamic relevance between stocks and concepts, limiting the forecasting results. Moreover, existing methods overlook the invaluable shared information carried by hidden concepts, which measure stocks' commonness beyond the manually defined stock concepts. To overcome the shortcomings of previous work, we proposed a novel stock trend forecasting framework that can adequately mine the concept-oriented shared information from predefined concepts and hidden concepts. The proposed framework simultaneously utilize the stock's shared information and individual information to improve the stock trend forecasting performance. Experimental results on the real-world tasks demonstrate the efficiency of our framework on stock trend forecasting. The investment simulation shows that our framework can achieve a higher investment return than the baselines.
Abstract:The multivariate time series forecasting has attracted more and more attention because of its vital role in different fields in the real world, such as finance, traffic, and weather. In recent years, many research efforts have been proposed for forecasting multivariate time series. Although some previous work considers the interdependencies among different variables in the same timestamp, existing work overlooks the inter-connections between different variables at different time stamps. In this paper, we propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps for multivariate time series forecasting. The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast. We conduct experiments on the Traffic, Electricity, and Exchange-Rate multivariate time series datasets. The results show that our proposed model outperforms the state-of-the-art baseline methods.
Abstract:Stock trend forecasting, aiming at predicting the stock future trends, is crucial for investors to seek maximized profits from the stock market. Many event-driven methods utilized the events extracted from news, social media, and discussion board to forecast the stock trend in recent years. However, existing event-driven methods have two main shortcomings: 1) overlooking the influence of event information differentiated by the stock-dependent properties; 2) neglecting the effect of event information from other related stocks. In this paper, we propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods. To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts. To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks. The experimental studies on the real-world data demonstrate the efficiency of our REST framework. The results of investment simulation show that our framework can achieve a higher return of investment than baselines.