Abstract:Learning the embeddings of knowledge graphs is vital in artificial intelligence, and can benefit various downstream applications, such as recommendation and question answering. In recent years, many research efforts have been proposed for knowledge graph embedding. However, most previous knowledge graph embedding methods ignore the semantic similarity between the related entities and entity-relation couples in different triples since they separately optimize each triple with the scoring function. To address this problem, we propose a simple yet efficient contrastive learning framework for knowledge graph embeddings, which can shorten the semantic distance of the related entities and entity-relation couples in different triples and thus improve the expressiveness of knowledge graph embeddings. We evaluate our proposed method on three standard knowledge graph benchmarks. It is noteworthy that our method can yield some new state-of-the-art results, achieving 51.2% MRR, 46.8% Hits@1 on the WN18RR dataset, and 59.1% MRR, 51.8% Hits@1 on the YAGO3-10 dataset.