Abstract:Information extraction (IE) aims to extract structural knowledge (such as entities, relations, and events) from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation, allowing for generalization across various domains and tasks. As a result, numerous works have been proposed to harness abilities of LLMs and offer viable solutions for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and learning paradigms, then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related resources at: \url{https://github.com/quqxui/Awesome-LLM4IE-Papers}.
Abstract:In the realm of e-commerce search, the significance of semantic matching cannot be overstated, as it directly impacts both user experience and company revenue. Along this line, query rewriting, serving as an important technique to bridge the semantic gaps inherent in the semantic matching process, has attached wide attention from the industry and academia. However, existing query rewriting methods often struggle to effectively optimize long-tail queries and alleviate the phenomenon of "few-recall" caused by semantic gap. In this paper, we present BEQUE, a comprehensive framework that Bridges the sEmantic gap for long-tail QUEries. In detail, BEQUE comprises three stages: multi-instruction supervised fine tuning (SFT), offline feedback, and objective alignment. We first construct a rewriting dataset based on rejection sampling and auxiliary tasks mixing to fine-tune our large language model (LLM) in a supervised fashion. Subsequently, with the well-trained LLM, we employ beam search to generate multiple candidate rewrites, and feed them into Taobao offline system to obtain the partial order. Leveraging the partial order of rewrites, we introduce a contrastive learning method to highlight the distinctions between rewrites, and align the model with the Taobao online objectives. Offline experiments prove the effectiveness of our method in bridging semantic gap. Online A/B tests reveal that our method can significantly boost gross merchandise volume (GMV), number of transaction (#Trans) and unique visitor (UV) for long-tail queries. BEQUE has been deployed on Taobao, one of most popular online shopping platforms in China, since October 2023.
Abstract:Large language models (LLMs) have demonstrated powerful capabilities in both text understanding and generation. Companies have begun to offer Embedding as a Service (EaaS) based on these LLMs, which can benefit various natural language processing (NLP) tasks for customers. However, previous studies have shown that EaaS is vulnerable to model extraction attacks, which can cause significant losses for the owners of LLMs, as training these models is extremely expensive. To protect the copyright of LLMs for EaaS, we propose an Embedding Watermark method called EmbMarker that implants backdoors on embeddings. Our method selects a group of moderate-frequency words from a general text corpus to form a trigger set, then selects a target embedding as the watermark, and inserts it into the embeddings of texts containing trigger words as the backdoor. The weight of insertion is proportional to the number of trigger words included in the text. This allows the watermark backdoor to be effectively transferred to EaaS-stealer's model for copyright verification while minimizing the adverse impact on the original embeddings' utility. Our extensive experiments on various datasets show that our method can effectively protect the copyright of EaaS models without compromising service quality.
Abstract:A good personalized product search (PPS) system should not only focus on retrieving relevant products, but also consider user personalized preference. Recent work on PPS mainly adopts the representation learning paradigm, e.g., learning representations for each entity (including user, product and query) from historical user behaviors (aka. user-product-query interactions). However, we argue that existing methods do not sufficiently exploit the crucial collaborative signal, which is latent in historical interactions to reveal the affinity between the entities. Collaborative signal is quite helpful for generating high-quality representation, exploiting which would benefit the representation learning of one node from its connected nodes. To tackle this limitation, in this work, we propose a new model IHGNN for personalized product search. IHGNN resorts to a hypergraph constructed from the historical user-product-query interactions, which could completely preserve ternary relations and express collaborative signal based on the topological structure. On this basis, we develop a specific interactive hypergraph neural network to explicitly encode the structure information (i.e., collaborative signal) into the embedding process. It collects the information from the hypergraph neighbors and explicitly models neighbor feature interaction to enhance the representation of the target entity. Extensive experiments on three real-world datasets validate the superiority of our proposal over the state-of-the-arts.
Abstract:Both accuracy and efficiency are of significant importance to the task of visual object tracking. In recent years, as the surge of deep learning, Deep Convolutional NeuralNetwork (DCNN) becomes a very popular choice among the tracking community. However, due to the high computational complexity, end-to-end visual object trackers can hardly achieve an acceptable inference time and therefore can difficult to be utilized in many real-world applications. In this paper, we revisit a hierarchical deep feature-based visual tracker and found that both the performance and efficiency of the deep tracker are limited by the poor feature quality. Therefore, we propose a feature selection module to select more discriminative features for the trackers. After removing redundant features, our proposed tracker achieves significant improvements in both performance and efficiency. Finally, comparisons with state-of-the-art trackers are provided.