Abstract:In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large
Abstract:In the realm of e-commerce search, the significance of semantic matching cannot be overstated, as it directly impacts both user experience and company revenue. Along this line, query rewriting, serving as an important technique to bridge the semantic gaps inherent in the semantic matching process, has attached wide attention from the industry and academia. However, existing query rewriting methods often struggle to effectively optimize long-tail queries and alleviate the phenomenon of "few-recall" caused by semantic gap. In this paper, we present BEQUE, a comprehensive framework that Bridges the sEmantic gap for long-tail QUEries. In detail, BEQUE comprises three stages: multi-instruction supervised fine tuning (SFT), offline feedback, and objective alignment. We first construct a rewriting dataset based on rejection sampling and auxiliary tasks mixing to fine-tune our large language model (LLM) in a supervised fashion. Subsequently, with the well-trained LLM, we employ beam search to generate multiple candidate rewrites, and feed them into Taobao offline system to obtain the partial order. Leveraging the partial order of rewrites, we introduce a contrastive learning method to highlight the distinctions between rewrites, and align the model with the Taobao online objectives. Offline experiments prove the effectiveness of our method in bridging semantic gap. Online A/B tests reveal that our method can significantly boost gross merchandise volume (GMV), number of transaction (#Trans) and unique visitor (UV) for long-tail queries. BEQUE has been deployed on Taobao, one of most popular online shopping platforms in China, since October 2023.