Abstract:Integrated sensing and communications (ISAC) is envisioned as a key feature in future wireless communications networks. Its integration with massive multiple-input-multiple-output (MIMO) techniques promises to leverage substantial spatial beamforming gains for both functionalities. In this work, we consider a massive MIMO-ISAC system employing a uniform planar array with zero-forcing and maximum-ratio downlink transmission schemes combined with monostatic radar-type sensing. Our focus lies on deriving closed-form expressions for the achievable communications rate and the Cram\'er--Rao lower bound (CRLB), which serve as performance metrics for communications and sensing operations, respectively. The expressions enable us to investigate important operational characteristics of massive MIMO-ISAC, including the mutual effects of communications and sensing as well as the advantages stemming from using a very large antenna array for each functionality. Furthermore, we devise a power allocation strategy based on successive convex approximation to maximize the communications rate while guaranteeing the CRLB constraints and transmit power budget. Extensive numerical results are presented to validate our theoretical analyses and demonstrate the efficiency of the proposed power allocation approach.
Abstract:Federated Learning is a promising approach for learning from user data while preserving data privacy. However, the high requirements of the model training process make it difficult for clients with limited memory or bandwidth to participate. To tackle this problem, Split Federated Learning is utilized, where clients upload their intermediate model training outcomes to a cloud server for collaborative server-client model training. This methodology facilitates resource-constrained clients' participation in model training but also increases the training time and communication overhead. To overcome these limitations, we propose a novel algorithm, called Hierarchical Split Federated Learning (HierSFL), that amalgamates models at the edge and cloud phases, presenting qualitative directives for determining the best aggregation timeframes to reduce computation and communication expenses. By implementing local differential privacy at the client and edge server levels, we enhance privacy during local model parameter updates. Our experiments using CIFAR-10 and MNIST datasets show that HierSFL outperforms standard FL approaches with better training accuracy, training time, and communication-computing trade-offs. HierSFL offers a promising solution to mobile edge computing's challenges, ultimately leading to faster content delivery and improved mobile service quality.
Abstract:Wireless communications are particularly vulnerable to eavesdropping attacks due to their broadcast nature. To effectively deal with eavesdroppers, existing security techniques usually require accurate channel state information (CSI), e.g., for friendly jamming (FJ), and/or additional computing resources at transceivers, e.g., cryptography-based solutions, which unfortunately may not be feasible in practice. This challenge is even more acute in low-end IoT devices. We thus introduce a novel deep learning-based FJ framework that can effectively defeat eavesdropping attacks with imperfect CSI and even without CSI of legitimate channels. In particular, we first develop an autoencoder-based communication architecture with FJ, namely AEFJ, to jointly maximize the secrecy rate and minimize the block error rate at the receiver without requiring perfect CSI of the legitimate channels. In addition, to deal with the case without CSI, we leverage the mutual information neural estimation (MINE) concept and design a MINE-based FJ scheme that can achieve comparable security performance to the conventional FJ methods that require perfect CSI. Extensive simulations in a multiple-input multiple-output (MIMO) system demonstrate that our proposed solution can effectively deal with eavesdropping attacks in various settings. Moreover, the proposed framework can seamlessly integrate MIMO security and detection tasks into a unified end-to-end learning process. This integrated approach can significantly maximize the throughput and minimize the block error rate, offering a good solution for enhancing communication security in wireless communication systems.
Abstract:We consider unmanned aerial vehicle (UAV)-enabled wireless systems where downlink communications between a multi-antenna UAV and multiple users are assisted by a hybrid active-passive reconfigurable intelligent surface (RIS). We aim at a fairness design of two typical UAV-enabled networks, namely the static-UAV network where the UAV is deployed at a fixed location to serve all users at the same time, and the mobile-UAV network which employs the time division multiple access protocol. In both networks, our goal is to maximize the minimum rate among users through jointly optimizing the UAV's location/trajectory, transmit beamformer, and RIS coefficients. The resulting problems are highly nonconvex due to a strong coupling between the involved variables. We develop efficient algorithms based on block coordinate ascend and successive convex approximation to effectively solve these problems in an iterative manner. In particular, in the optimization of the mobile-UAV network, closed-form solutions to the transmit beamformer and RIS passive coefficients are derived. Numerical results show that a hybrid RIS equipped with only 4 active elements and a power budget of 0 dBm offers an improvement of 38%-63% in minimum rate, while that achieved by a passive RIS is only about 15%, with the same total number of elements.
Abstract:In conventional joint communications and sensing (JCAS) designs for multi-carrier multiple-input multiple-output (MIMO) systems, the dual-functional waveforms are often optimized for the whole frequency band, resulting in limited communications--sensing performance tradeoff. To overcome the limitation, we propose employing a subset of subcarriers for JCAS, while the communications function is performed over all the subcarriers. This offers more degrees of freedom to enhance the communications performance under a given sensing accuracy. We first formulate the rate maximization under the sensing accuracy constraint to optimize the beamformers and JCAS subcarriers. The problem is solved via Riemannian manifold optimization and closed-form solutions. Numerical results for an 8x4 MIMO system with 64 subcarriers show that compared to the conventional subcarrier sharing scheme, the proposed scheme employing 16 JCAS subcarriers offers 60% improvement in the achievable communications rate at the signal-to-noise ratio of 10 dB. Meanwhile, this scheme generates the sensing beampattern with the same quality as the conventional JCAS design.
Abstract:To enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (ORAN). So far, however, the applicability of ORAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in ORAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction.
Abstract:Semantic communication (SemCom) and edge computing are two disruptive solutions to address emerging requirements of huge data communication, bandwidth efficiency and low latency data processing in Metaverse. However, edge computing resources are often provided by computing service providers and thus it is essential to design appealingly incentive mechanisms for the provision of limited resources. Deep learning (DL)- based auction has recently proposed as an incentive mechanism that maximizes the revenue while holding important economic properties, i.e., individual rationality and incentive compatibility. Therefore, in this work, we introduce the design of the DLbased auction for the computing resource allocation in SemComenabled Metaverse. First, we briefly introduce the fundamentals and challenges of Metaverse. Second, we present the preliminaries of SemCom and edge computing. Third, we review various incentive mechanisms for edge computing resource trading. Fourth, we present the design of the DL-based auction for edge resource allocation in SemCom-enabled Metaverse. Simulation results demonstrate that the DL-based auction improves the revenue while nearly satisfying the individual rationality and incentive compatibility constraints.
Abstract:The convergence of mobile edge computing (MEC) and blockchain is transforming the current computing services in wireless Internet-of-Things networks, by enabling task offloading with security enhancement based on blockchain mining. Yet the existing approaches for these enabling technologies are isolated, providing only tailored solutions for specific services and scenarios. To fill this gap, we propose a novel cooperative task offloading and blockchain mining (TOBM) scheme for a blockchain-based MEC system, where each edge device not only handles computation tasks but also deals with block mining for improving system utility. To address the latency issues caused by the blockchain operation in MEC, we develop a new Proof-of-Reputation consensus mechanism based on a lightweight block verification strategy. To accommodate the highly dynamic environment and high-dimensional system state space, we apply a novel distributed deep reinforcement learning-based approach by using a multi-agent deep deterministic policy gradient algorithm. Experimental results demonstrate the superior performance of the proposed TOBM scheme in terms of enhanced system reward, improved offloading utility with lower blockchain mining latency, and better system utility, compared to the existing cooperative and non-cooperative schemes. The paper concludes with key technical challenges and possible directions for future blockchain-based MEC research.
Abstract:We consider a multi-user multiple-input single-output (MISO) communications system which is assisted by a hybrid active-passive reconfigurable intelligent surface (RIS). Unlike conventional passive RISs, hybrid RIS is equipped with a few active elements with the ability to reflect and amplify incident signals to significantly improve the system performance. Towards a fairness-oriented design, we maximize the minimum rate among all users through jointly optimizing the transmit beamforming vectors and RIS reflecting/amplifying coefficients. Combining tools from block coordinate ascent and successive convex approximation, the challenging nonconvex problem is efficiently solved by a low-complexity iterative algorithm. The numerical results show that a hybrid RIS with 4 active elements out of a total of 50 elements with a power budget of -1 dBm offers an improvement of up to 80% to the considered system, while that achieved by a fully passive RIS is only 27%.
Abstract:Federated learning (FL) is capable of performing large distributed machine learning tasks across multiple edge users by periodically aggregating trained local parameters. To address key challenges of enabling FL over a wireless fog-cloud system (e.g., non-i.i.d. data, users' heterogeneity), we first propose an efficient FL algorithm (called FedFog) to perform the local aggregation of gradient parameters at fog servers and global training update at the cloud. Next, we employ FedFog in wireless fog-cloud systems by investigating a novel network-aware FL optimization problem that strikes the balance between the global loss and completion time. An iterative algorithm is then developed to obtain a precise measurement of the system performance, which helps design an efficient stopping criteria to output an appropriate number of global rounds. To mitigate the straggler effect, we propose a flexible user aggregation strategy that trains fast users first to obtain a certain level of accuracy before allowing slow users to join the global training updates. Extensive numerical results using several real-world FL tasks are provided to verify the theoretical convergence of FedFog. We also show that the proposed co-design of FL and communication is essential to substantially improve resource utilization while achieving comparable accuracy of the learning model.